[next][previous][up][top][index]
search for:

Module -- the class of all modules

The type Module is a member of the class Type. Each object of class Module is called a module. Each module is also a member of class Type.

More general types (whose methods may also apply) :

  • Type -- the class of all types
  • MutableHashTable -- the class of all mutable hash tables
  • HashTable -- the class of all hash tables
  • See also:

  • ideals and modules
  • Common ways to make a module:

  • Ring ^ ZZ -- make a free module
  • Ring ^ {...} -- make a free module
  • cokernel Matrix -- cokernel of a map
  • image Matrix -- image of a map
  • kernel Matrix -- kernel of a map
  • Common ways to get information about modules:

  • ring Module -- get the associated ring
  • numgens Module -- the number of generators
  • degrees Module -- degrees of generators
  • generators Module -- matrix of generators
  • relations Module -- the defining relations
  • isFreeModule -- whether something is a free module
  • isHomogeneous Module -- test for homogeneity
  • rank -- compute the rank
  • ambient Module -- ambient free module of a subquotient, or ambient ring
  • cover Module -- get the covering free module
  • super Module -- get the ambient module
  • Common operations on modules:

  • Module + Module -- sum of submodules
  • Module / Module -- quotient module
  • Module == Module -- equality
  • Module ++ Module -- direct sum of modules
  • Module ** Module -- tensor product of modules
  • Module ^ {...} -- projection map from a free module
  • Module _ {...} -- map from free module to some generators
  • Numerical information about a module:

  • codim Module -- calculate the codimension
  • degree Module -- the degree
  • dim Module -- calculate the dimension
  • genera Module -- list the sectional arithmetic genera
  • hilbertSeries Module -- compute Hilbert series
  • hilbertFunction(ZZ,Module) -- Hilbert function of a module
  • poincare Module -- assemble degrees into polynomial
  • pdim Module -- calculate the projective dimension
  • regularity Module -- compute the regularity
  • rank Module -- compute the rank
  • Common computations on modules:

  • Module : Ideal -- a binary operator
  • annihilator Module -- the annihilator ideal
  • gb Module -- compute a Groebner basis
  • prune Module -- minimize generators and relations
  • resolution Module -- make a projective resolution
  • saturate(Module,Ideal) -- saturation of ideal or submodule
  • Hom -- module of homomorphisms
  • homomorphism Matrix -- get the homomorphism from element of Hom
  • Ext^ZZ(Module,Module) -- compute an Ext module
  • Tor_ZZ(Module,Module) -- compute a Tor module
  • homology(Matrix,Matrix) -- kernel modulo image
  • Common ways to use a module:

  • fittingIdeal(ZZ,Module) -- Fitting ideal of a module
  • isSubset(Module,Module) -- whether something is a subset of another
  • exteriorPower(ZZ,Module) -- exterior power
  • Functions and methods returning a a module :

  • ambient Module -- ambient free module of a subquotient, or ambient ring
  • ChainComplex ^ ZZ
  • ChainComplex _ ZZ -- get component
  • coimage Matrix
  • cokernel Matrix
  • cokernel RingElement
  • cover Module -- get the covering free module
  • dual Module -- dual module
  • Ext(Module,Module) -- compute an Ext module
  • Ext^ZZ(CoherentSheaf,CoherentSheaf)
  • Ext^ZZ(CoherentSheaf,SheafOfRings)
  • Ext^ZZ(CoherentSheaf,SumOfTwists)
  • Ext^ZZ(Module,Module) -- compute an Ext module
  • Ext^ZZ(SheafOfRings,CoherentSheaf)
  • Ext^ZZ(SheafOfRings,SheafOfRings)
  • Ext^ZZ(SheafOfRings,SumOfTwists)
  • exteriorPower(ZZ,Module)
  • GradedModule _ ZZ
  • HH^ZZ ChainComplex -- cohomology of a chain complex
  • HH^ZZ CoherentSheaf -- coherent sheaf cohomology
  • HH^ZZ Module -- local cohomology
  • HH^ZZ SheafOfRings
  • HH^ZZ SumOfTwists -- coherent sheaf cohomology
  • HH_ZZ ChainComplex -- homology of a chain complex
  • Hom(CoherentSheaf,CoherentSheaf)
  • Hom(Ideal,Ideal)
  • Hom(Ideal,Module)
  • Hom(Ideal,Ring)
  • Hom(Module,Ideal)
  • Hom(Module,Module)
  • Hom(Module,Ring)
  • Hom(Ring,Ideal)
  • Hom(Ring,Module)
  • homogenize(Module,RingElement)
  • homogenize(Module,RingElement,List)
  • homology(Matrix,Matrix) -- kernel modulo image
  • Ideal * Module
  • Ideal / Ideal -- quotient module
  • image Matrix
  • image RingElement
  • kernel Matrix
  • kernel RingElement
  • Module ** Module -- tensor product of modules
  • Module ** Ring -- tensor product
  • Module + Module -- sum of submodules
  • Module ++ Module -- direct sum of modules
  • Module / Sequence
  • Module / List
  • Module / Ideal -- quotient module by an ideal
  • Module / Module -- quotient module
  • Module / RingElement
  • Module / Vector
  • Module : Ideal
  • Module : RingElement
  • Module ^ ZZ -- make a direct sum of several copies of a module
  • module
  • module CoherentSheaf -- get the module defining a coherent sheaf
  • module Ideal -- turn an ideal into a module
  • module SheafOfRings
  • MonomialIdeal * Module
  • prune Module -- minimize generators and relations
  • pushForward(RingMap,Module)
  • pushForward1(RingMap,Module)
  • quotient(Module,Ideal)
  • quotient(Module,RingElement)
  • removeLowestDimension Module
  • Ring ^ {...} -- make a free module
  • Ring ^ ZZ -- make a free module
  • RingElement * Module
  • RingMap ** Module -- a binary operator, usually used for tensor product
  • RingMap Module -- blank operator for adjacent expressions
  • saturate Module
  • saturate Vector
  • saturate(Module,Ideal)
  • saturate(Module,RingElement)
  • subquotient -- make a subquotient module
  • subquotient(Matrix,Matrix)
  • subquotient(Matrix,Nothing)
  • subquotient(Nothing,Matrix)
  • substitute(Module,List)
  • substitute(Module,Matrix)
  • substitute(Module,Ring)
  • sum ChainComplex -- direct sum of the components of a chain complex
  • super Module
  • tensor(Module,Module)
  • top Module
  • Tor_ZZ(Module,Module)
  • trim Module
  • truncate(List,Module)
  • truncate(ZZ,Module)
  • Methods for using a module :

  • adjoint(Matrix,Module,Module)
  • adjoint1(Matrix,Module,Module)
  • ann' Module
  • annihilator Module -- the annihilator ideal
  • basis Module -- basis of a module
  • basis({...},Module) -- basis of the part of a module of a certain degree
  • basis(ZZ,Module)
  • betti Module
  • ChainComplex ** Module
  • ChainComplexMap ** Module
  • codim Module -- calculate the codimension
  • components Module
  • coverMap Module
  • degree Module
  • degreeLength Module
  • degrees Module -- degrees of generators
  • degreesRing Module
  • dim Module
  • euler Module
  • expression Module
  • Ext(Ideal,Module)
  • Ext(Module,Ideal)
  • Ext(Module,Ring)
  • Ext^ZZ(Ideal,Module)
  • Ext^ZZ(Matrix,Module)
  • Ext^ZZ(Module,Ideal)
  • Ext^ZZ(Module,Matrix)
  • Ext^ZZ(Module,Ring)
  • fittingIdeal(ZZ,Module)
  • flip(Module,Module) -- matrix of commutativity of tensor product
  • gb Module
  • genera Module
  • generators Module -- matrix of generators
  • GradedModule ** Module
  • GradedModule ++ Module
  • gradedModule Module
  • hilbertFunction(List,Module)
  • hilbertFunction(ZZ,Module)
  • hilbertPolynomial Module
  • hilbertSeries Module
  • Hom(ChainComplex,Module) -- Hom
  • Hom(ChainComplexMap,Module)
  • Hom(Matrix,Module)
  • Hom(Module,ChainComplex)
  • Hom(Module,ChainComplexMap)
  • Hom(Module,Matrix)
  • Ideal == Module
  • ideal Module
  • inducedMap(Module,Module)
  • inducedMap(Module,Module,Matrix)
  • inducedMap(Module,Nothing,Matrix)
  • inducedMap(Nothing,Module,Matrix)
  • inducesWellDefinedMap(Module,Module,Matrix)
  • inducesWellDefinedMap(Module,Nothing,Matrix)
  • inducesWellDefinedMap(Nothing,Module,Matrix)
  • isDirectSum Module
  • isFreeModule Module -- whether something is a free module
  • isHomogeneous Module
  • isIdeal Module -- whether something is an ideal
  • isModule Module
  • isQuotientModule Module -- whether a module is evidently a quotient of a free module
  • isSubmodule Module -- whether a module is evidently a submodule of a free module
  • isSubset(Ideal,Module)
  • isSubset(Module,Ideal)
  • isSubset(Module,Module)
  • map Module -- make a map
  • map(Module,Matrix) -- make a map
  • map(Module,Module) -- make a map
  • map(Module,Module,{...}) -- make a map
  • map(Module,Module,Function) -- make a map
  • map(Module,Module,Matrix) -- make a map
  • map(Module,Module,RingElement) -- make a map
  • map(Module,Module,ZZ) -- make a map
  • map(Module,Nothing,{...}) -- make a map
  • map(Module,Nothing,Matrix)
  • map(Module,RingElement) -- make a map
  • map(Module,ZZ)
  • map(Module,ZZ,{...}) -- make a map
  • map(Module,ZZ,Function) -- make a map
  • Matrix % Module
  • Matrix ** Module -- tensor product
  • mingens Module
  • Module ** ChainComplex
  • Module ** ChainComplexMap
  • Module ** GradedModule
  • Module ** Matrix
  • Module ++ GradedModule
  • Module : Module
  • Module == Ideal
  • Module == Module -- equality
  • Module == ZZ
  • Module [...] -- make a chain complex from a module
  • Module ^ [...] -- projection onto some factors of a direct sum module
  • Module ^ {...} -- projection map from a free module
  • Module ^** ZZ -- tensor power
  • Module _ [...] -- get inclusion map into direct sum
  • Module _ {...} -- map from free module to some generators
  • Module _ ZZ -- get a generator
  • Module ~ -- make a coherent sheaf
  • monomialIdeal Module
  • net Module
  • new Module from Ring
  • numgens Module
  • pdim Module
  • poincare Module
  • presentation Module
  • quotient(Module,Module)
  • random(Module,Module) -- make a random module map
  • rank Module
  • regularity Module
  • relations Module
  • reshape(Module,Module,Matrix)
  • resolution Module -- make a projective resolution
  • Ring / Module
  • sheaf Module -- make a coherent sheaf
  • sheaf(Variety,Module) -- make a coherent sheaf
  • substitute(Module,Option)
  • symmetricAlgebra Module
  • tensorAssociativity(Module,Module,Module)
  • toExternalString Module
  • toString Module
  • wedgeProduct(ZZ,ZZ,Module)
  • ZZ * Module
  • ZZ == Module
  • ZZ _ Module

  • [next][previous][up][top][index]
    search for: