[top][index]
search for:

trim -- simplify the presentation

trim M -- produce a module isomorphic to the module M obtained by replacing its generators by a minimal set of generators, and doing the same for the relations.

Also works for rings and ideals.

i1 : R = ZZ/101[x]

o1 = R

o1 : PolynomialRing
i2 : M = subquotient( matrix {{x,x^2,x^3}}, matrix {{x^3,x^4,x^5}})

o2 = subquotient (| x x2 x3 |, | x3 x4 x5 |)

                               1
o2 : R-module, subquotient of R
i3 : trim M

o3 = subquotient (| x |, | x3 |)

                               1
o3 : R-module, subquotient of R

Ways to use trim :

  • trim Ideal
  • trim Module
  • trim QuotientRing
  • trim Ring
  • Optional arguments :


    [top][index]
    search for: