[top][index]
search for:

HH_ZZ ChainComplex -- homology of a chain complex

Synopsis:

  • Function: homology -- general homology functor
  • Input:
  • an instance of class ZZ.
  • an instance of class ChainComplex.
  • Output:
  • an instance of class Module.
  • Optional arguments :

  • HH_i C -- homology at the i-th spot of the chain complex C.

    i1 : R = ZZ/101[x,y]

    o1 = R

    o1 : PolynomialRing
    i2 : C = chainComplex(matrix{{x,y}},matrix{{x*y},{-x^2}})

          1      2      1
    o2 = R  <-- R  <-- R
                        
         0      1      2

    o2 : ChainComplex
    i3 : M = HH_1 C

    o3 = subquotient ({1} | -y |, {1} | xy  |)
                      {1} | x  |  {1} | -x2 |

                                   2
    o3 : R-module, subquotient of R
    i4 : prune M

    o4 = cokernel {2} | x |

                                1
    o4 : R-module, quotient of R

    Code:

         -- ../../../Macaulay2/m2/chaincomplexes.m2:449
         homology(ZZ,ChainComplex) := Module => opts -> (i,C) -> homology(C.dd_i, C.dd_(i+1))

    [top][index]
    search for: