[top][index]
search for:

truncate -- truncate the module at a specified degree

truncate (i,M) -- yields the submodule of M consisting of all elements of degrees >= i. If i is a multi-degree, then this yields the submodule generated by all elements of degree exactly i, together with all generators which have a higher primary degree than that of i.

The degree i may be a multi-degree, represented as a list of integers. The ring of M should be a (quotient of a) polynomial ring, where the coefficient ring, k, is a field.

Caveat:

  • If the degrees of the variables are not all one, then there is currently a bug in the routine: some generators of higher degree than i may be duplicated in the generator list.
  • i1 : R = ZZ/101[a..c];
    i2 : truncate(2,R^1)

    o2 = image | a2 ab ac b2 bc c2 |

                                 1
    o2 : R-module, submodule of R
    i3 : truncate(2, ideal(a,b,c^3)/ideal(a^2,b^2,c^4))

    o3 = subquotient (| c3 bc ab ac |, | a2 b2 c4 |)

                                   1
    o3 : R-module, subquotient of R

    i4 : S = ZZ/101[x,y,z,Degrees=>{{1,3},{1,4},{1,-1}}];
    i5 : truncate({7,24}, S^1 ++ S^{{-8,-20}})

    o5 = image {0, 0}  | x4y3 0 |
               {8, 20} | 0    1 |

                                 2
    o5 : S-module, submodule of S

    Ways to use truncate :

  • truncate(List,Ideal)
  • truncate(List,Module)
  • truncate(ZZ,Ideal)
  • truncate(ZZ,Module)

  • [top][index]
    search for: