[top][index]
search for:

hilbertSeries -- compute Hilbert series

hilbertSeries M -- compute the Hilbert series of the ring or module M.

The Hilbert series is the formal power series in the variables of the degrees ring whose coefficients are the dimensions of the corresponding graded component. The series is provided as an Expression representing a rational function with that series.

If an optional integer argument labelled Order is used, then the power series is expanded to that order.

i1 : R = ZZ/101[x, Degrees => {2}];
i2 : hilbertSeries(R/x^2)

            4
      1 - $T
o2 = ---------
            2
     (1 - $T )

o2 : Divide
i3 : numerator oo

           4
o3 = 1 - $T

o3 : ZZ[ZZ^1]
i4 : value oo

           4
o4 = 1 - $T

o4 : ZZ[ZZ^1]
i5 : poincare (R/x^2)

           4
o5 = 1 - $T

o5 : ZZ[ZZ^1]
i6 : hilbertSeries(R/x^2, Order => 12)

           2
o6 = 1 + $T

o6 : ZZ[ZZ^1]

i7 : R=ZZ/101[x, Degrees => {{1,1}}];
i8 : hilbertSeries (R/x^2)

            2  2
      1 - $T $T
            0  1
o8 = ------------
     (1 - $T $T )
            0  1

o8 : Divide

See also:

  • degreesRing -- the ring of degrees
  • Order -- specify the order of a Hilbert series required
  • Ways to use hilbertSeries :

  • hilbertSeries CoherentSheaf
  • hilbertSeries Ideal
  • hilbertSeries Module
  • hilbertSeries PolynomialRing
  • hilbertSeries ProjectiveHilbertPolynomial
  • hilbertSeries ProjectiveVariety
  • hilbertSeries QuotientRing
  • Optional arguments :

  • hilbertSeries(..., Order) -- specify the order of a Hilbert series required

  • [top][index]
    search for: