


![[top]](top.gif)
Module ** Ring -- tensor product
Synopsis:
M ** R -- form the tensor product of a module M with a ring R.
The ring of M should be a base ring of R.
i1 : R = ZZ/101[x,y]; |
i2 : M = coker vars R
o2 = cokernel | x y |
1
o2 : R-module, quotient of R |
i3 : M ** R[t]
o3 = cokernel | x y |
1
o3 : R [t]-module, quotient of R [t] |



![[top]](top.gif)