generators Module -- matrix of generators
Synopsis:
Every module in Macaulay2 has, at least implicitly, a generator matrix and a
matrix of relations, both of which are matrices between free modules.
This function returns the generator matrix.
i1 : R = GF(8)
o1 = R
o1 : GaloisField |
i2 : f = R_0 ++ R_0^2 ++ R_0^3 ++ R_0^4
o2 = | $a 0 0 0 |
| 0 $a^2 0 0 |
| 0 0 $a+1 0 |
| 0 0 0 $a^2+$a |
4 4
o2 : Matrix R <--- R |
i3 : generators(image f)
o3 = | $a 0 0 0 |
| 0 $a^2 0 0 |
| 0 0 $a+1 0 |
| 0 0 0 $a^2+$a |
4 4
o3 : Matrix R <--- R |
i4 : generators(cokernel f)
o4 = | 1 0 0 0 |
| 0 1 0 0 |
| 0 0 1 0 |
| 0 0 0 1 |
4 4
o4 : Matrix R <--- R |
Caveat:
This function returns a matrix with the given generators. This
set of generators may not be minimal, or sorted in any particular
order. Use trim Module or mingens Module instead.
See also:
relations Module -- the defining relations
Code:
-- ../../../Macaulay2/m2/matrix.m2:636
generators Module := Matrix => M -> if M.?generators then M.generators else id_(ambient M)