[top][index]
search for:

Matrix ** Module -- tensor product

Synopsis:

  • Operator: ** -- a binary operator, usually used for tensor product
  • Input:
  • an instance of class Matrix.
  • an instance of class Module.
  • Output:
  • an instance of class Matrix.
  • f ** N -- tensor product of a matrix f and a module N.

    This is the same as tensoring f with the identity map of N.

    When N is a free module of rank 1 the net effect of the operation is to shift the degrees of f.

    i1 : R = ZZ/101[t]

    o1 = R

    o1 : PolynomialRing
    i2 : f = matrix {{t}}

    o2 = | t |

                 1       1
    o2 : Matrix R  <--- R
    i3 : degrees source f

    o3 = {{1}}

    o3 : List
    i4 : degrees source (f ** R^{-3})

    o4 = {{4}}

    o4 : List

    See also:

  • Matrix -- the class of all matrices
  • Module -- the class of all modules
  • Code:

         -- ../../../Macaulay2/m2/modules2.m2:53-60
         Matrix ** Module := Matrix => (f,M) -> (
              P := youngest(f,M);
              key := (f,M,symbol **);
              if P#?key then P#key
              else f**M = (
                   f ** id_M
                   )
              )

    [top][index]
    search for: