Synopsis:
f ** N -- tensor product of a matrix f and a module N.
This is the same as tensoring f with the identity map of N.
When N is a free module of rank 1 the net effect of the operation is to shift the degrees of f.
i1 : R = ZZ/101[t] |
i2 : f = matrix {{t}} |
i3 : degrees source f |
i4 : degrees source (f ** R^{-3}) |
See also:
Code:
-- ../../../Macaulay2/m2/modules2.m2:53-60 Matrix ** Module := Matrix => (f,M) -> ( P := youngest(f,M); key := (f,M,symbol **); if P#?key then P#key else f**M = ( f ** id_M ) )