[previous][up][top][index]
search for:

RingMap ** Module -- a binary operator, usually used for tensor product

Synopsis:

  • Usage: N = f ** M
  • Operator: ** -- a binary operator, usually used for tensor product
  • Input:
  • f, an instance of class RingMap: a ring map from R to S.
  • M, an instance of class Module: an R-module
  • Output:
  • N, an instance of class Module: the tensor product of M with S over R.
  • i1 : R = QQ[x,y];
    i2 : S = QQ[t];
    i3 : f = map(S,R,{t^2,t^3})

                   2   3
    o3 = map(S,R,{t , t })

    o3 : RingMap S <--- R
    i4 : f ** coker vars R

    o4 = cokernel | t2 t3 |

                                1
    o4 : S-module, quotient of S
    i5 : f ** image vars R

    o5 = cokernel {1} | -t3 |
                  {1} | t2  |

                                2
    o5 : S-module, quotient of S

    See also:

  • RingMap Module -- blank operator for adjacent expressions
  • Code:

         -- ../../../Macaulay2/m2/ringmap.m2:298-302
         RingMap ** Module := Module => (f,M) -> (
              R := source f;
              S := target f;
              if R =!= ring M then error "expected module over source ring";
              cokernel f(presentation M));

    [previous][up][top][index]
    search for: