[next][previous][up][top][index]
search for:

resolution Module -- make a projective resolution

Synopsis:

  • Usage: C = resolution M
  • Function: resolution -- make a projective resolution
  • Input:
  • M, an instance of class Module: a module
  • Output:
  • C, an instance of class ChainComplex: a free resolution of M
  • Optional arguments :
  • resolution(..., DegreeLimit => ...) -- compute only up to this degree
  • resolution(..., HardDegreeLimit => ...) -- compute only up to this degree
  • resolution(..., LengthLimit => ...) -- stop when the resolution reaches this length
  • resolution(..., PairLimit => ...) -- stop when this number of pairs are handled
  • resolution(..., SortStrategy => ...) -- specify a strategy for sorting S-pairs
  • resolution(..., StopBeforeComputation => ...) -- whether to stop the computation immediately
  • resolution(..., Strategy => ...) -- specify a computational strategy
  • resolution(..., SyzygyLimit => ...) -- stop when this number of syzygies are obtained
  • For an abbreviation, use res.

    i1 : R = ZZ/32003[a..d]/(a^2+b^2+c^2+d^2);
    i2 : M = coker vars R

    o2 = cokernel | a b c d |

                                1
    o2 : R-module, quotient of R
    i3 : C = resolution(M, LengthLimit=>6)

          1      4      7      8      8      8      8
    o3 = R  <-- R  <-- R  <-- R  <-- R  <-- R  <-- R
                                                    
         0      1      2      3      4      5      6

    o3 : ChainComplex

    For an overview of resolutions, in order of increasing detail, see

  • Hilbert functions and free resolutions
  • free resolutions of modules
  • computing resolutions -- most detailed
  • Some useful related functions

  • betti ChainComplex -- display of degrees in a chain complex
  • status Resolution -- status of a resolution computation

  • [next][previous][up][top][index]
    search for: