[top][index]
search for:

betti ChainComplex -- display of degrees in a chain complex

Synopsis:

  • Usage: n = betti C
  • Function: betti -- display degrees
  • Input:
  • C, an instance of class ChainComplex.
  • Output:
  • n, an instance of class Net: a net displaying the degrees of the generators of the modules in C.
  • The display can be used to determine the degrees of the entries in the matrices of the differentials in the chain complex, provided they are homogeneous maps of degree 0.

    Here is a sample display:

    i1 : R = ZZ/101[a..h]

    o1 = R

    o1 : PolynomialRing
    i2 : p = genericMatrix(R,a,2,4)

    o2 = | a c e g |
         | b d f h |

                 2       4
    o2 : Matrix R  <--- R
    i3 : q = generators gb p

    o3 = | g e c a 0     0     0     0     0     0     |
         | h f d b fg-eh dg-ch bg-ah de-cf be-af bc-ad |

                 2       10
    o3 : Matrix R  <--- R
    i4 : C = resolution cokernel leadTerm q

          2      10      14      7      1
    o4 = R  <-- R   <-- R   <-- R  <-- R  <-- 0
                                               
         0      1       2       3      4      5

    o4 : ChainComplex
    i5 : betti C

    o5 = total: 2 10 14 7 1
             0: 2  4  6 4 1
             1: .  6  8 3 .

    The top row of the display indicates the ranks of the free module C_j in column j. The entry below in row i column j gives the number of basis elements of degree i+j.

    If these numbers are needed in a program, one way to get them is with tally.

    i6 : degrees C_2

    o6 = {{2}, {2}, {2}, {2}, {2}, {2}, {3}, {3}, {3}, {3}, {3}, {3}, {3}, {3}}

    o6 : List
    i7 : t2 = tally degrees C_2

    o7 = Tally{{2} => 6}
               {3} => 8

    o7 : Tally
    i8 : peek t2

    o8 = Tally{{2} => 6}
               {3} => 8
    i9 : t2_{2}

    o9 = 6
    i10 : t2_{3}

    o10 = 8

    Code:

         -- ../../../Macaulay2/m2/chaincomplexes.m2:659
         betti ChainComplex := C -> bettiDisplay rawbetti C

    [top][index]
    search for: