Module _ [...] -- get inclusion map into direct sum
Synopsis:
M_[i,j,k] -- get inclusion map of blocks from a module M.
The module M should be a direct sum, and the result is the matrix
obtained by inclusion from the sum of the components numbered
i, j, k. Free modules are regarded as direct sums.
i1 : M = ZZ^2 ++ ZZ^3
5
o1 = ZZ
o1 : ZZ-module, free |
i2 : M_[0]
o2 = | 1 0 |
| 0 1 |
| 0 0 |
| 0 0 |
| 0 0 |
5 2
o2 : Matrix ZZ <--- ZZ |
i3 : M_[1]
o3 = | 0 0 0 |
| 0 0 0 |
| 1 0 0 |
| 0 1 0 |
| 0 0 1 |
5 3
o3 : Matrix ZZ <--- ZZ |
i4 : M_[1,0]
o4 = | 0 0 0 1 0 |
| 0 0 0 0 1 |
| 1 0 0 0 0 |
| 0 1 0 0 0 |
| 0 0 1 0 0 |
5 5
o4 : Matrix ZZ <--- ZZ |
See also:
submatrix -- select part of a matrix
Matrix _ [...] -- select some columns of blocks
Module ^ [...] -- projection onto some factors of a direct sum module
Module _ {...} -- map from free module to some generators