[top][index]
search for:

quotient -- ideal or submodule quotient

quotient(I,J) -- computes the ideal or submodule quotient (I:J).

The arguments should be ideals in the same ring, or submodules of the same module. If J is a ring element, then the principal ideal generated by J is used.

The operator : can be used as an abbreviation, but without optional arguments; see Module : Module.

For ideals, the quotient is the set of ring elements r such that rJ is contained in I. If I is a submodule of a module M, and J is an ideal, the quotient is the set of elements m of M such that Jm is contained in I. Finally, if I and J are submodules of the same module M, then the result is the set of ring elements r such that rJ is contained in I.

i1 : R = ZZ/32003[a..d];
i2 : J = monomialCurveIdeal(R,{1,4,7})

             2         3     3    4    3
o2 = ideal (c  - b*d, b c - a d, b  - a c)

o2 : Ideal of R
i3 : I = ideal(J_1-a^2*J_0,J_2-d*c*J_0)

             3     2 2    3     2      4    3     3         2
o3 = ideal (b c - a c  - a d + a b*d, b  - a c - c d + b*c*d )

o3 : Ideal of R
i4 : I : J

             3    2       2   3    2     2
o4 = ideal (b  - a c + c*d , a  - a b + c d)

o4 : Ideal of R

The computation is currently not stored anywhere: this means that the computation cannot be continued after an interrupt. This will be changed in a later version.

Ways to use quotient :

  • quotient(Ideal,Ideal)
  • quotient(Ideal,RingElement)
  • quotient(Module,Ideal)
  • quotient(Module,Module)
  • quotient(Module,RingElement)
  • Optional arguments :

  • quotient(..., MinimalGenerators => ...)
  • quotient(..., Strategy => ...) -- specify a computational strategy

  • [top][index]
    search for: