[next][previous][up][top][index]
search for:

Ring [...] -- the standard way to make a polynomial ring

Synopsis:

  • Operator: symbol " " -- blank operator for adjacent expressions
  • Input:
  • an instance of class Ring.
  • an instance of class Array.
  • Output:
  • an instance of class PolynomialRing.
  • R[...] -- produces the monoid ring from a ring R and the ordered monoid specified by [...].

    This is the customary way to make a polynomial ring.

    Optional arguments (placed inside the array):

  • Inverses -- specify whether generators are invertible
  • MonomialOrder -- monomial ordering
  • WeylAlgebra -- make a Weyl algebra
  • MonomialSize -- specify maximum exponent size
  • SkewCommutative -- make a skewcommutative (alternating) ring
  • VariableBaseName -- base name for variables
  • Variables -- specify the variable names
  • Weights -- specify monomial ordering by weights
  • Degrees -- specify the degrees
  • VariableOrder
  • Adjust -- adjust the multi-degree
  • Repair -- repair the multi-degree
  • NewMonomialOrder
  • See also:

  • polynomial rings
  • Code:

         -- ../../../Macaulay2/m2/orderedmonoidrings.m2:344
         Ring Array := PolynomialRing => (R,variables) -> use R monoid variables

    [next][previous][up][top][index]
    search for: