[next][previous][up][top][index]
search for:

evaluation and composition of ring maps

Sections:

  • evaluating ring maps
  • composition of ring maps
  • evaluating ring maps

    Once a ring map F is defined, the image of an element m in the source ring can be found by applying the map as F(m).

    i1 : R = ZZ[x,y,z];
    i2 : S = ZZ/101[x,y,z,Degrees => {{1,2},{1,3},{1,3}}]/ideal(x+z^3);
    i3 : F = map(S,R,{x,y^2,z^3})

                      2
    o3 = map(S,R,{x, y , -x})

    o3 : RingMap S <--- R
    i4 : use R; F(107*x+y+z)

          2
    o5 = y  + 5x

    o5 : S

    composition of ring maps

    The function RingMap * RingMapperforms a composition of ring maps. Evaluation of elements in the source of a ring map G can also be done usingF(G(m)).

    i6 : T = ZZ/5[x,y];
    i7 : G = map(T,S);

    o7 : RingMap T <--- S
    i8 : G*F

                      2
    o8 = map(T,R,{x, y , -x})

    o8 : RingMap T <--- R
    i9 : use R; G(F(107*x+y+z))

           2
    o10 = y

    o10 : T


    [next][previous][up][top][index]
    search for: