[previous][up][top][index]
search for:

kernel and image of a ring map

The kernel and image of a ring map can be computed using image and ker . The output of ker is an ideal and the output of imageis a ring or quotient ring.

i1 : R = QQ[x,y,w]; U = QQ[s,t,u]/ideal(s^2);
i3 : H = map(U,R,matrix{{s^2,t^3,u^4}})

                  3   4
o3 = map(U,R,{0, t , u })

o3 : RingMap U <--- R
i4 : ker H

o4 = ideal x

o4 : Ideal of R
i5 : image H

     R
o5 = -
     x

o5 : QuotientRing


[previous][up][top][index]
search for: