i1 : S = QQ[x,y,z]/ideal(x^3+y^3+z^3); |
i2 : T = QQ[u,v,w]/ideal(u^3+v^3+w^3); |
i3 : G = map(T,S,matrix{{u,v,w^2}}) |
i4 : G(x^3+y^3+z) |
If the third argument is not given there are two possibilities. If a variable in the source ring also appears in the target ring then that variable is mapped to itself and if a variable does not appear in the target ring then it is mapped to zero.
i5 : R = QQ[x,y,w]; |
i6 : F = map(S,R) |
i7 : F(x^3) |
i8 : U = QQ[s,t,u, Degrees => {{1,2},{1,1},{1,3}}]; |
i9 : H = map(U,R,matrix{{s^2,t^3,u^4}}) |
i10 : use R; H(x^2+y^2+w^2) |
i12 : source H |
i13 : target H |
i14 : H.matrix |
i15 : source H.matrix |
i16 : target H.matrix |
For more on matrices from maps see input a matrix.