[next][previous][up][top][index]
search for:

basic construction, source and target of a ring map

Sections:

  • constructing a ring map
  • source and target
  • obtaining the matrix defining a map
  • constructing a ring map

    Use the function map construct a map between two rings. The input, in order, is the target, the source, and the images of the variables of the source ring. The images can be given as a matrix or a list.

    i1 : S = QQ[x,y,z]/ideal(x^3+y^3+z^3);
    i2 : T = QQ[u,v,w]/ideal(u^3+v^3+w^3);
    i3 : G = map(T,S,matrix{{u,v,w^2}})

                         2
    o3 = map(T,S,{u, v, w })

    o3 : RingMap T <--- S
    i4 : G(x^3+y^3+z)

            6    2
    o4 = - w  + w

    o4 : T

    If the third argument is not given there are two possibilities. If a variable in the source ring also appears in the target ring then that variable is mapped to itself and if a variable does not appear in the target ring then it is mapped to zero.

    i5 : R = QQ[x,y,w];
    i6 : F = map(S,R)

    o6 = map(S,R,{x, y, 0})

    o6 : RingMap S <--- R
    i7 : F(x^3)

            3    3
    o7 = - y  - z

    o7 : S

    source and target

    Once a ring map is defined the functions source and target can be used to find out what the source and target of a map are. These functions are particularly useful when working with matrices (see the next example).

    i8 : U = QQ[s,t,u, Degrees => {{1,2},{1,1},{1,3}}];
    i9 : H = map(U,R,matrix{{s^2,t^3,u^4}})

                   2   3   4
    o9 = map(U,R,{s , t , u })

    o9 : RingMap U <--- R
    i10 : use R; H(x^2+y^2+w^2)

           8    6    4
    o11 = u  + t  + s

    o11 : U
    i12 : source H

    o12 = R

    o12 : PolynomialRing
    i13 : target H

    o13 = U

    o13 : PolynomialRing

    obtaining the matrix defining a map

    Use F.matrix to obtain the matrix defining the map F.

    i14 : H.matrix

    o14 = | s2 t3 u4 |

                  1       3
    o14 : Matrix U  <--- U
    i15 : source H.matrix

           3
    o15 = U

    o15 : U-module, free, degrees {{2, 4}, {3, 3}, {4, 12}}
    i16 : target H.matrix

           1
    o16 = U

    o16 : U-module, free

    For more on matrices from maps see input a matrix.


    [next][previous][up][top][index]
    search for: