i1 : R = ZZ/5[s..z]; |
i2 : M = matrix {{ x^2+y, z^3}, {y^3-z,3*z-6*x-5*y}} |
i3 : G = map(R^3,3,(i,j)->R_i^j) |
i4 : f = 3*s^2*v-t*u*v+s*t^2 |
i5 : H = map(R^4,R^4,(i,j)->diff(R_j*R_i,f)) |
i6 : id_(R^3) |
i7 : id_(coker M) |
The first example gives a 3x3 identity matrix formed in the ambient ring.