[next][previous][up][top][index]
search for:

ideals

An overview

In Macaulay 2, once a ring (see rings) is defined, ideals are constructed in the usual way by giving a set of generators.
  • creating an ideal
  • conversions
  • ideals to and from matrices
  • ideals to and from modules
  • basic operations on ideals
  • sums, products, and powers of ideals
  • equality and containment
  • extracting generators of an ideal
  • dimension, codimension, and degree
  • components of ideals
  • intersection of ideals
  • ideal quotients and saturation
  • radical of an ideal
  • minimal primes of an ideal
  • associated primes of an ideal
  • primary decomposition
  • Groebner bases and related computations
  • For those operations where we consider an ideal as a module, such as computing Hilbert functions and polynomials, syzygies, free resolutions, see modules I.

    For additional common operations and a comprehensive list of all routines in Macaulay 2 which return or use ideals, see Ideal.


    [next][previous][up][top][index]
    search for: