[next][previous][up][top][index]
search for:

radical of an ideal

There are two main ways to find the radical of an ideal. The first is to use the function radical and the second is to find the intersection of the minimal prime ideals. On some large examples the second method is faster.

Sections:

  • using radical
  • using minimal prime ideals
  • using radical

    i1 : S = ZZ/101[x,y,z]

    o1 = S

    o1 : PolynomialRing
    i2 : I = ideal(x^3-y^2,y^2*z^2)

                 3    2   2 2
    o2 = ideal (x  - y , y z )

    o2 : Ideal of S
    i3 : radical I

                           3    2
    o3 = ideal (y*z, x*z, x  - y )

    o3 : Ideal of S

    using minimal prime ideals

    An alternate way to find the radical of an ideal I is to take the intersection of its minimal prime ideals. To find the minimal primes of an ideal I use the function decompose. Then use intersect.

    i4 : intersect decompose I

                               3    2
    o4 = ideal (-y*z, -x*z, - x  + y )

    o4 : Ideal of S


    [next][previous][up][top][index]
    search for: