i1 : A = ZZ/101[x,y]; |
i2 : M = cokernel random(A^3, A^{-2,-2})
o2 = cokernel | 42x2-50xy+39y2 -39x2+30xy+19y2 |
| 9x2-15xy-22y2 -38x2+2xy-4y2 |
| 50x2+45xy-29y2 -36x2-16xy-6y2 |
3
o2 : A-module, quotient of A |
i3 : R = cokernel matrix {{x^3,y^4}}
o3 = cokernel | x3 y4 |
1
o3 : A-module, quotient of A |
i4 : N = prune (M**R)
o4 = cokernel | -41x2-26xy+17y2 -50x2-42xy-4y2 x3 x2y-16xy2+50y3 -12xy2-19y3 0 0 y4 |
| 20xy-5y2 x2+6xy-24y2 0 -12xy2+45y3 18xy2-37y3 0 y4 0 |
| x2+21xy-5y2 -25xy-6y2 0 16y3 xy2+y3 y4 0 0 |
3
o4 : A-module, quotient of A |
i5 : C = resolution N
3 8 5
o5 = A <-- A <-- A <-- 0
0 1 2 3
o5 : ChainComplex |
i6 : d = C.dd
3 8
o6 = 0 : A <----------------------------------------------------------------------------- A : 1
| -25xy-6y2 x2+21xy-5y2 0 16y3 xy2+y3 0 0 y4 |
| x2+6xy-24y2 20xy-5y2 0 -12xy2+45y3 18xy2-37y3 0 y4 0 |
| -50x2-42xy-4y2 -41x2-26xy+17y2 x3 x2y-16xy2+50y3 -12xy2-19y3 y4 0 0 |
8 5
1 : A <-------------------------------------------------------------------------- A : 2
{2} | -3xy2+8y3 43xy2+23y3 3y3 16y3 -50y3 |
{2} | -7xy2-6y3 36y3 7y3 3y3 30y3 |
{3} | 15xy+24y2 -12xy-49y2 -15y2 20y2 -35y2 |
{3} | -15x2-11xy+43y2 12x2-33xy+35y2 15xy-13y2 -20xy-39y2 35xy+41y2 |
{3} | 7x2+8xy+37y2 39xy-40y2 -7xy-2y2 -3xy-47y2 -30xy+13y2 |
{4} | 0 0 x -41y 12y |
{4} | 0 0 12y x+11y 10y |
{4} | 0 0 -40y -26y x-11y |
5
2 : A <----- 0 : 3
0
o6 : ChainComplexMap |
i7 : s = nullhomotopy (x^3 * id_C)
8 3
o7 = 1 : A <------------------------ A : 0
{2} | -20y x-6y 0 |
{2} | x-21y 25y 0 |
{3} | 41 50 1 |
{3} | -17 -41 0 |
{3} | 47 38 0 |
{4} | 0 0 0 |
{4} | 0 0 0 |
{4} | 0 0 0 |
5 8
2 : A <--------------------------------------------------------------------------- A : 1
{5} | 9 -50 0 32y 29x+21y xy+50y2 -14xy+35y2 -39xy+44y2 |
{5} | -19 -19 0 -42x-25y 11x+41y 12y2 xy+43y2 -18xy+42y2 |
{5} | 0 0 0 0 0 x2+38y2 41xy+45y2 -12xy-37y2 |
{5} | 0 0 0 0 0 -12xy+35y2 x2-11xy-25y2 -10xy+43y2 |
{5} | 0 0 0 0 0 40xy+27y2 26xy+24y2 x2+11xy-13y2 |
5
3 : 0 <----- A : 2
0
o7 : ChainComplexMap |
i8 : s*d + d*s
3 3
o8 = 0 : A <---------------- A : 0
| x3 0 0 |
| 0 x3 0 |
| 0 0 x3 |
8 8
1 : A <----------------------------------- A : 1
{2} | x3 0 0 0 0 0 0 0 |
{2} | 0 x3 0 0 0 0 0 0 |
{3} | 0 0 x3 0 0 0 0 0 |
{3} | 0 0 0 x3 0 0 0 0 |
{3} | 0 0 0 0 x3 0 0 0 |
{4} | 0 0 0 0 0 x3 0 0 |
{4} | 0 0 0 0 0 0 x3 0 |
{4} | 0 0 0 0 0 0 0 x3 |
5 5
2 : A <-------------------------- A : 2
{5} | x3 0 0 0 0 |
{5} | 0 x3 0 0 0 |
{5} | 0 0 x3 0 0 |
{5} | 0 0 0 x3 0 |
{5} | 0 0 0 0 x3 |
3 : 0 <----- 0 : 3
0
o8 : ChainComplexMap |
i9 : s^2
5 3
o9 = 2 : A <----- A : 0
0
8
3 : 0 <----- A : 1
0
o9 : ChainComplexMap |