[next][previous][up][top][index]
search for:

map(Ring,Ring,{...}) -- make a ring map

Synopsis:

  • Usage: f = map(R,S,m)
  • Function: map -- make a map
  • Input:
  • R, an instance of class Ring: the target ring
  • S, an instance of class Ring: the source ring
  • m, an instance of class List: a list of n elements of R, where n is the number of variables in the polynomial ring S.
  • Output:
  • f, an instance of class RingMap: the ring homomorphism from S to R which sends the i-th variable of S to the i-th entry in m.
  • Optional arguments :
  • map(..., Degree)
  • map(..., DegreeMap => ...)
  • i1 : R = ZZ[x,y];
    i2 : S = ZZ[a,b,c];
    i3 : f = map(R,S,{x^2,x*y,y^2})

                   2        2
    o3 = map(R,S,{x , x*y, y })

    o3 : RingMap R <--- S
    i4 : f(a+b+c^2)

          4    2
    o4 = y  + x  + x*y

    o4 : R

    See also:

  • map(Ring,Ring,Matrix) -- make a ring map
  • Code:

         -- ../../../Macaulay2/m2/ringmap.m2:78
         map(Ring,Ring,List) := RingMap => options -> (R,S,m) -> map(R,S,matrix(R,{m}),options)

    [next][previous][up][top][index]
    search for: