[top][index]
search for:

Projective -- whether to produce a projective Hilbert polynomial

Projective => true -- an option to hilbertPolynomial which specifies that the Hilbert polynomial produced should be expressed in terms of the Hilbert polynomials of projective spaces. This is the default.
Projective => false -- an option to hilbertPolynomial which specifies that the Hilbert polynomial produced should be expressed as a polynomial in the degree.

i1 : R = ZZ/101[a..d]

o1 = R

o1 : PolynomialRing
i2 : S = image map(R, R, {a^4, a^3*b, a*b^3, b^4})

o2 = S

o2 : QuotientRing
i3 : presentation S

o3 = | bc-ad c3-bd2 ac2-b2d b3-a2c |

             1       4
o3 : Matrix R  <--- R
i4 : h = hilbertPolynomial S

o4 = - 3*P  + 4*P
          0      1

o4 : ProjectiveHilbertPolynomial

The rational quartic curve in P^3 is therefore 'like' 4 copies of P^1, with three points missing. One can see this by noticing that there is a deformation of the rational quartic to the union of 4 lines, or 'sticks', which intersect in three successive points.

These Hilbert polynomials can serve as Hilbert functions, too.

i5 : h 3

o5 = 13
i6 : basis(3,S)

o6 = | a3 a2b a2c a2d ab2 abd acd ad2 b2d bd2 c2d cd2 d3 |

             1       13
o6 : Matrix S  <--- S
i7 : rank source basis(3,S)

o7 = 13

Note that the Hilbert polynomial of P^i is z |--> binomial(z + i, i).

See also:

  • ProjectiveHilbertPolynomial -- the class of all Hilbert polynomials
  • Functions with optional argument named Projective :

  • hilbertPolynomial(..., Projective) -- whether to produce a projective Hilbert polynomial

  • [top][index]
    search for: