Papers
Papers below are listed by year of publication, or by year of submission before they are published.
For papers ordered by citation count, see my
google scholar profile.
Here are a few papers that give a good overview of my research.
My projects page collects talks, software, and papers by topic.
Interpretable Prediction and Feature Selection for Survival Analysis
M. V. Ness and M. Udell
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2025
[arxiv][bib]
When Does Primal Interior Point Method Beat Primal-dual in Linear Optimization?
W. Gao, H. Liu, Y. Ye, and M. Udell
2024
[arxiv][url][bib]
Gradient Methods with Online Scaling
W. Gao, Y. Chu, Y. Ye, and M. Udell
2024
[arxiv][url][bib]
DNAMite: Interpretable Calibrated Survival Analysis with Discretized Additive Models
M. Van Ness, B. Block, and M. Udell
Machine Learning for Health (ML4H), 2024
[url][bib]
AI-Driven Review Systems: Evaluating LLMs in Scalable and Bias-Aware Academic Reviews
K. Tyser, B. Segev, G. Longhitano, X. Zhang, Z. Meeks, J. Lee, U. Garg, N. Belsten, A. Shporer, M. Udell, D. Te'eni, and I. Drori
2024
[arxiv][url][bib]
Have ASkotch: Fast Methods for Large-scale, Memory-constrained Kernel Ridge Regression
P. Rathore, Z. Frangella, and M. Udell
Submitted, 2024
[arxiv][url][bib]
OptiMUS-0.3: Using Large Language Models to Model and Solve Optimization Problems at Scale
A. AhmadiTeshnizi, W. Gao, H. Brunborg, S. Talaei, and M. Udell
Submitted, 2024
[arxiv][url][bib]
Randomized Nystr\"om Preconditioned Interior Point-Proximal Method of Multipliers
Y. Chu, L. Santos, and M. Udell
Submitted, 2024
[arxiv][bib]
OptiMUS: Scalable Optimization Modeling Using MIP Solvers and Large Language Models
A. AhmadiTeshnizi, W. Gao, and M. Udell
International Conference on Machine Learning (ICML), 2024
[arxiv][url][bib][video]
Challenges in Training PINNs: A Loss Landscape Perspective
P. Rathore, W. Lei, Z. Frangella, L. Lu, and M. Udell
International Conference on Machine Learning (ICML), 2024
[arxiv][bib]
SketchySGD: Reliable Stochastic Optimization via Robust Curvature Estimates
Z. Frangella, P. Rathore, S. Zhao, and M. Udell
SIAM Journal on Mathematics of Data Science (SIMODS), 2024
[arxiv][url][bib]
gcimpute: A Package for Missing Data Imputation
Y. Zhao and M. Udell
Journal of Statistical Software, 2024
[arxiv][url][code][bib][video]
Scalable Approximate Optimal Diagonal Preconditioning
W. Gao, Z. Qu, M. Udell, and Y. Ye
Submitted, 2023
[arxiv][bib]
In Defense of Zero Imputation for Tabular Deep Learning
M. Van Ness and M. Udell
Table representation learning workshop at NeurIPS, 2023
[url][bib]
OptiMUS: Optimization Modeling Using MIP Solvers and Large Language Models
A. AhmadiTeshnizi, W. Gao, and M. Udell
2023
[arxiv][url][bib][video]
GeNIOS: an (almost) second-order operator-splitting solver for large-scale convex optimization
T. Diamandis, Z. Frangella, S. Zhao, B. Stellato, and M. Udell
In revision at Math Programming Computation, 2023
[arxiv][url][bib]
PROMISE: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates
P. Rathore, Z. Frangella, and M. Udell
JMLR, 2023
[arxiv][url][bib]
Paper reviewing and revision by ChatGPT with GPT-4 Vision at a human level
I. Drori, J. Lee, K. Tyser, A. Shporer, M. Udell, and D. Te'eni
Submitted to IUI, 2023
[url][bib]
A Greedy Galerkin Method to Efficiently Select Sensors for Linear Dynamical Systems
D. Kouri, Z. Hua, and M. Udell
Linear Algebra and its Applications, 2023
[pdf][url][bib]
The Missing Indicator Method: From Low to High Dimensions
V. N. Mike, T. Bosschieter, R. Halpin-Gregorio, and M. Udell
29th SIGKDD Conference on Knowledge Discovery and Data Mining - Applied Data Science Track, 2023
[arxiv][url][bib][video]
From Human Days to Machine Seconds: Automatically Answering and Generating Machine Learning Final Exams
I. Drori, S. J. Zhang, R. S. Shuttleworth, S. Zhang, K. Tyser, Z. Chin, P. Lantigua, S. Surbehera, G. Hunter, D. Austin, L. Tang, Y. Hicke, S. Simhon, S. Karnik, D. Granberry, and M. Udell
SIGKDD Conference on Knowledge Discovery and Data Mining - Applied Data Science Track, 2023
[url][bib][video]
Interpretable Survival Analysis for Heart Failure Risk Prediction
M. Van Ness, T. Bosschieter, N. Din, A. Ambrosy, A. Singh, and M. Udell
Machine Learning for Health (ML4H), 2023
[arxiv][url][bib]
On the (linear) convergence of Generalized Newton Inexact ADMM
Z. Frangella, S. Zhao, T. Diamandis, B. Stellato, and M. Udell
Submitted, 2023
[arxiv][url][bib]
Data-Efficient and Interpretable Tabular Anomaly Detection
C. Chang, J. Yoon, S. Arik, M. Udell, and T. Pfister
arXiv preprint arXiv:2203.02034, 2023
[url][bib]
Low-Rank Tensor Recovery with Euclidean-Norm-Induced Schatten-p Quasi-Norm Regularization
J. Fan, L. Ding, C. Yang, and M. Udell
Transactions on Machine Learning Research, 2023
[arxiv][url][bib]
Randomized Numerical Linear Algebra for Optimization
M. Udell and Z. Frangella
SIAG/OPT Views and News, 2022
[pdf][url][bib][video]
Probabilistic Missing Value Imputation for Mixed Categorical and Ordered Data
Y. Zhao, A. Townsend, and M. Udell
NeurIPS, 2022
[arxiv][url][bib]
ControlBurn: Nonlinear Feature Selection with Sparse Tree Ensembles
B. Liu, M. Xie, H. Yang, and M. Udell
2022
[url][bib]
Resource-Constrained Neural Architecture Search on Tabular Datasets
C. Yang, G. Bender, H. Liu, P. Kindermans, M. Udell, Y. Lu, Q. Le, and D. Huang
NeurIPS, 2022
[arxiv][url][bib]
NysADMM: faster composite convex optimization via low-rank approximation
S. Zhao, Z. Frangella, and M. Udell
International Conference on Machine Learning (ICML), 2022
[arxiv][url][bib]
Towards Group Robustness in the presence of Partial Group Labels
V. S. Lokhande, K. Sohn, J. Yoon, M. Udell, C. Lee, and T. Pfister
CoRR, 2022
[url][bib]
Randomized Nystr\"om Preconditioning
Z. Frangella, J. A. Tropp, and M. Udell
SIAM Journal on Matrix Analysis and Applications, 2022
[arxiv][url][bib]
How Low Can We Go: Trading Memory for Error in Low-Precision Training
C. Yang, Z. Wu, J. Chee, C. D. Sa, and M. Udell
International Conference on Learning Representations (ICLR), 2022
[arxiv][url][bib]
A Strict Complementarity Approach to Error Bound and Sensitivity of Solution of Conic Programs
L. Ding and M. Udell
Optimization Letters, 2022
[arxiv][pdf][url][bib]
Sparse Data Reconstruction, Missing Value and Multiple Imputation through Matrix Factorization
N. Sengupta, M. Udell, N. Srebro, and J. Evans
Sociological Methodology, 2022
[url][bib]
CDF Normalization for Controlling the Distribution of Hidden Layer Activations
M. Van Ness and M. Udell
I (Still) Can't Believe It's Not Better! NeurIPS 2021 Workshop, 2021
[url][bib]
Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression
W. T. Stephenson, Z. Frangella, M. Udell, and T. Broderick
Advances in Neural Information Processing Systems (NeurIPS), 2021
[arxiv][bib]
Privileged Zero-Shot AutoML
N. Singh, B. Kates, J. Mentch, A. Kharkar, M. Udell, and I. Drori
2021
[arxiv][url][bib]
An automatic system to detect equivalence between iterative algorithms
S. Zhao, L. Lessard, and M. Udell
2021
[arxiv][pdf][url][slides][bib]
ControlBurn: Feature Selection by Sparse Forests
B. Liu, M. Xie, and M. Udell
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2021
[arxiv][url][slides][bib]
TenIPS: Inverse Propensity Sampling for Tensor Completion
C. Yang, L. Ding, Z. Wu, and M. Udell
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
[arxiv][url][bib]
Online Missing Value Imputation and Correlation Change Detection for Mixed-type Data via Gaussian Copula
Y. Zhao, E. Landgrebe, E. Shekhtman, and M. Udell
AAAI, 2021
[arxiv][url][bib]
Robust Non-Linear Matrix Factorization for Dictionary Learning, Denoising, and Clustering
J. Fan, C. Yang, and M. Udell
IEEE Trans. Signal Processing (TSP), 2021
[arxiv][pdf][url][bib]
On the simplicity and conditioning of low rank semidefinite programs
L. Ding and M. Udell
SIAM Journal on Optimization (SIOPT), 2021
[arxiv][url][bib]
Scalable Semidefinite Programming
A. Yurtsever, J. Tropp, O. Fercoq, M. Udell, and V. Cevher
SIAM Journal on Mathematics of Data Science (SIMODS), 2021
[arxiv][pdf][bib]
Randomized Sketching Algorithms for Low-Memory Dynamic Optimization
R. Muthukumar, D. Kouri, and M. Udell
SIAM Journal on Optimization (SIOPT), 2021
[pdf][url][bib]
An Optimal-Storage Approach to Semidefinite Programming using Approximate Complementarity
L. Ding, A. Yurtsever, V. Cevher, J. Tropp, and M. Udell
SIAM Journal on Optimization (SIOPT), 2021
Winner of 2017 INFORMS Optimization Society student paper prize
[arxiv][pdf][slides][bib]
Impact of Accuracy on Model Interpretations
B. Liu and M. Udell
2020
[arxiv][url][bib]
Galaxy TSP: A new billion-node benchmark for TSP
I. Drori, B. Kates, W. Sickinger, A. Kharkar, B. Dietrich, A. Shporer, and M. Udell
NeurIPS Workshop on Learning Meets Combinatorial Algorithms, 2020
[url][bib]
Approximate Cross-Validation with Low-Rank Data in High Dimensions
W. Stephenson, M. Udell, and T. Broderick
Advances in Neural Information Processing Systems (NeurIPS), 2020
[arxiv][url][bib]
Online Mixed Missing Value Imputation Using Gaussian Copula
E. Landgrebe, Y. Zhao, and M. Udell
ICML Workshop on the Art of Learning with Missing Values (Artemiss), 2020
[pdf][url][bib]
TenIPS: Inverse Propensity Sampling for Tensor Completion (Workshop)
C. Yang, L. Ding, Z. Wu, and M. Udell
OPT2020: 12th Annual Workshop on Optimization for Machine Learning, 2020
[url][bib]
kFW: A Frank-Wolfe style algorithm with stronger subproblem oracles
L. Ding, J. Fan, and M. Udell
In revision at Computational Optimization and Applications, 2020
[arxiv][url][bib]
Matrix Completion with Quantified Uncertainty through Low Rank Gaussian Copula
Y. Zhao and M. Udell
Advances in Neural Information Processing Systems (NeurIPS), 2020
[arxiv][pdf][bib]
Learning to Solve Combinatorial Optimization Problems on Real-World Graphs in Linear Time
I. Drori, A. Kharkar, W. R. Sickinger, B. Kates, Q. Ma, S. Ge, E. Dolev, B. Dietrich, D. P. Williamson, and M. Udell
IEEE International Conference on Machine Learning and Applications (IEEE ICMLA), 2020
[arxiv][url][bib]
Efficient AutoML Pipeline Search with Matrix and Tensor Factorization
C. Yang, J. Fan, Z. Wu, and M. Udell
2020
[arxiv][url][bib]
Zero-shot AutoML
I. Drori, L. Liu, Q. Ma, B. Kates, and M. Udell
Annual Machine Learning Symposium, 2020
[bib]
Real-time AutoML
I. Drori, L. Liu, Q. Ma, J. Deykin, B. Kates, and M. Udell
2020
[url][bib]
An Information-Theoretic Approach to Persistent Environment Monitoring Through Low Rank Model Based Planning and Prediction
E. Ricci, M. Udell, and R. Knepper
2020
[arxiv][url][bib]
AutoML Pipeline Selection: Efficiently Navigating the Combinatorial Space
C. Yang, J. Fan, Z. Wu, and M. Udell
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2020
[arxiv][url][bib]
Polynomial Matrix Completion for Missing Data Imputation and Transductive Learning
J. Fan, Y. Zhang, and M. Udell
Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020
[arxiv][url][bib]
Missing Value Imputation for Mixed Data Through Gaussian Copula
Y. Zhao and M. Udell
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2020
[arxiv][pdf][slides][bib][video]
Low-Rank Tucker Approximation of a Tensor From Streaming Data
Y. Sun, Y. Guo, C. Luo, J. Tropp, and M. Udell
SIAM Journal on Mathematics of Data Science (SIMODS), 2020
[arxiv][pdf][url][slides][bib]
SysML: The New Frontier of Machine Learning Systems
A. Ratner, D. Alistarh, G. Alonso, D. G. Andersen, P. Bailis, S. Bird, N. Carlini, B. Catanzaro, E. Chung, B. Dally, J. Dean, I. S. Dhillon, A. G. Dimakis, P. Dubey, C. Elkan, G. Fursin, G. R. Ganger, L. Getoor, P. B. Gibbons, G. A. Gibson, J. E. Gonzalez, J. Gottschlich, S. Han, K. M. Hazelwood, F. Huang, M. Jaggi, K. G. Jamieson, M. I. Jordan, G. Joshi, R. Khalaf, J. Knight, J. Konecn\'y, T. Kraska, A. Kumar, A. Kyrillidis, J. Li, S. Madden, H. B. McMahan, E. Meijer, I. Mitliagkas, R. Monga, D. G. Murray, D. S. Papailiopoulos, G. Pekhimenko, T. Rekatsinas, A. Rostamizadeh, C. R\'e, C. D. Sa, H. Sedghi, S. Sen, V. Smith, A. Smola, D. Song, E. R. Sparks, I. Stoica, V. Sze, M. Udell, J. Vanschoren, S. Venkataraman, R. Vinayak, M. Weimer, A. G. Wilson, E. P. Xing, M. Zaharia, C. Zhang, and A. Talwalkar
CoRR, 2019
[arxiv][url][bib]
Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery
J. Fan, L. Ding, Y. Chen, and M. Udell
Advances in Neural Information Processing Systems (NeurIPS), 2019
[arxiv][pdf][url][bib]
AutoML using Metadata Language Embeddings
I. Drori, L. Liu, S. Koorathota, N. Yi, J. Li, A. Moretti, J. Freire, and M. Udell
NeurIPS Workshop on Meta-Learning, 2019
[arxiv][pdf][bib]
OBOE: Collaborative Filtering for AutoML Model Selection
C. Yang, Y. Akimoto, D. Kim, and M. Udell
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2019
Oral presentation
[arxiv][pdf][url][bib][video]
``Why should you trust my explanation?'' Understanding uncertainty in LIME explanations
Y. Zhang, K. Song, Y. Sun, S. Tan, and M. Udell
ICML Workshop AI for Social Good, 2019
[arxiv][bib]
Streaming Low-Rank Matrix Approximation with an Application to Scientific Simulation
J. Tropp, A. Yurtsever, M. Udell, and V. Cevher
SIAM Scientific Computing (SISC), 2019
[arxiv][pdf][url][bib]
Big Data is Low Rank
M. Udell
SIAG/OPT Views and News, 2019
[pdf][url][slides][bib][video]
Online High-Rank Matrix Completion
J. Fan and M. Udell
Computer Vision and Pattern Recognition (CVPR), 2019
Oral Presentation
[pdf][bib]
Optimal Design of Efficient Rooftop Photovoltaic Arrays
M. Udell and O. Toole
INFORMS Journal on Applied Analytics (Interfaces), 2019
Second place in 2017 INFORMS Doing Good with Good OR Paper Competition
[pdf][url][bib]
Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved
J. Chen, N. Kallus, X. Mao, G. Svacha, and M. Udell
FAT*: Conference on Fairness, Accountability, and Transparency, 2019
[arxiv][pdf][slides][bib]
Why are Big Data Matrices Approximately Low Rank?
M. Udell and A. Townsend
SIAM Journal on Mathematics of Data Science (SIMODS), 2019
[arxiv][url][bib]
Dynamic Assortment Personalization in High Dimensions
N. Kallus and M. Udell
Operations Research, 2019
[arxiv][url][bib]
Tensor Random Projection for Low Memory Dimension Reduction
Y. Sun, Y. Guo, J. Tropp, and M. Udell
NeurIPS Workshop on Relational Representation Learning, 2018
[arxiv][pdf][url][bib]
More Practical Sketching Algorithms for Low-Rank Matrix Approximation
J. Tropp, A. Yurtsever, M. Udell, and V. Cevher
California Institute of Technology ACM Technical Report 2018-01, 2018
[pdf][bib]
OBOE: Collaborative Filtering for AutoML Initialization (workshop version)
C. Yang, Y. Akimoto, D. Kim, and M. Udell
NeurIPS Workshop on Automated Machine Learning, 2018
[arxiv][pdf][url][bib]
Limited Memory Kelley's Method Converges for Composite Convex and Submodular Objectives
S. Zhou, S. Gupta, and M. Udell
Advances in Neural Information Processing Systems, 2018
Spotlight presentation
[arxiv][pdf][slides][bib][video]
Causal Inference with Noisy and Missing Covariates via Matrix Factorization
N. Kallus, X. Mao, and M. Udell
Advances in Neural Information Processing Systems, 2018
[arxiv][code][bib]
Frank-Wolfe Style Algorithms for Large Scale Optimization
L. Ding and M. Udell
Large-Scale and Distributed Optimization, 2018
[arxiv][pdf][bib]
Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data
J. Tropp, A. Yurtsever, M. Udell, and V. Cevher
Advances in Neural Information Processing Systems, 2017
[arxiv][pdf][url][bib]
Graph-Regularized Generalized Low Rank Models
M. Paradkar and M. Udell
CVPR Workshop on Tensor Methods in Computer Vision, 2017
[pdf][bib]
Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage
A. Yurtsever, M. Udell, J. Tropp, and V. Cevher
International Conference on Artificial Intelligence and Statistics (AISTATS), 2017
Oral Presentation
[arxiv][pdf][url][slides][bib][video]
Disciplined Multi-Convex Programming
X. Shen, S. Diamond, M. Udell, Y. Gu, and S. Boyd
Chinese Control and Decision Conference (CCDC), 2017
Best Student Paper
[arxiv][bib]
Practical Sketching Algorithms for Low-Rank Matrix Approximation
J. Tropp, A. Yurtsever, M. Udell, and V. Cevher
SIAM Journal of Matrix Analysis and Applications (SIMAX), 2017
[arxiv][pdf][url][bib]
The Sound of APALM Clapping: Faster Nonsmooth Nonconvex Optimization with Stochastic Asynchronous PALM
D. Davis, B. Edmunds, and M. Udell
Advances in Neural Information Processing Systems, 2016
[arxiv][pdf][bib]
Discovering Patient Phenotypes Using Generalized Low Rank Models
A. Schuler, V. Liu, J. Wan, A. Callahan, M. Udell, D. Stark, and N. Shah
Pacific Symposium on Biocomputing (PSB), 2016
[pdf][url][bib]
Revealed Preference at Scale: Learning Personalized Preferences from Assortment Choices
N. Kallus and M. Udell
The 2016 ACM Conference on Economics and Computation, 2016
[pdf][url][bib]
Learning Preferences from Assortment Choices in a Heterogeneous Population
N. Kallus and M. Udell
ICML Workshop on Computational Frameworks for Personalization, 2016
[arxiv][bib]
Generalized Low Rank Models
M. Udell, C. Horn, R. Zadeh, and S. Boyd
Foundations and Trends in Machine Learning, 2016
[arxiv][pdf][url][slides][code][bib]
Bounding Duality Gap for Separable Problems with Linear Constraints
M. Udell and S. Boyd
Computational Optimization and Applications, 2016
[arxiv][pdf][url][bib]
Generalized Low Rank Models
M. Udell
Stanford University Thesis, 2015
[pdf][code][bib]
Revenue Maximization for Broadband Service Providers Using Revenue Capacity
H. Mehmood, M. Udell, and J. Cioffi
IEEE Global Communications Conference, 2015
[pdf][bib]
PCA on a Data Frame
M. Udell and S. Boyd
2015
[pdf][code][bib]
Factorization for Analog-to-Digital Matrix Multiplication
E. Lee, M. Udell, and S. Wong
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2015
[pdf][url][bib]
Beyond Principal Component Analysis (PCA)
M. Udell and S. Boyd
Biomedical Computation Review, 2014
[pdf][url][bib]
Convex Optimization in Julia
M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd
SC14 Workshop on High Performance Technical Computing in Dynamic Languages, 2014
[arxiv][url][code][bib]
Generalized Low Rank Models
M. Udell, C. Horn, R. Zadeh, and S. Boyd
NeurIPS Workshop on Distributed Machine Learning and Matrix Computations, 2014
[pdf][code][bib]
Incorporation of Flexible Objectives and Time-linked Simulation with Flux Balance Analysis
E. Birch, M. Udell, and M. Covert
Journal of Theoretical Biology, 2014
[pdf][url][bib]
Maximizing a Sum of Sigmoids
M. Udell and S. Boyd
2013
[pdf][code][bib]
Linear Bandits, Matrix Completion, and Recommendation Systems
M. Udell and R. Takapoui
NeurIPS Workshop on Large Scale Matrix Analysis and Inference, 2013
[pdf][bib]
Analyzing Patterns of Drug Use in Clinical Notes for Patient Safety
P. LePendu, Y. Liu, S. Iyer, M. Udell, and N. Shah
Proceedings of the AMIA Summits on Translational Science, 2012
[pdf][url][bib]
|