IN RETIREMENT:
A COMPUTER NERD and BIRDER
A. RESEARCH ARTICLES
1. The Accuracy and Convenience of Silicone-Treated Microliter Pipettes. E.L. Duggan and K.C. Smith, Science 116, 305-306 (1952). PDF Reprint
2. The Liberation of Polynucleotides by the Alkaline Hydrolysis of Ribonucleic Acid from Yeast. K.C. Smith and F.W. Allen, J. Amer. Chem. Soc., 75, 2131-2133 (1953). PDF Reprint
3. The Preparation and Characterization of Ribonucleic Acids from Yeast. A.M. Crestfield, K.C. Smith and F.W. Allen, J. Biol. Chem., 216, 185-193 (1955). PDF Reprint
4. The Effect of Whole-Body X-irradiation on the Enzymatic Activity of Several Rat Tissues toward Uridine, Uridylic Acid, Cytidine, and Cytidylic Acid. K.C. Smith and B.V.A. Low-Beer, Radiat. Res., 6, 521-531 (1957). PDF Reprint
5. Fractionation of Transfer Ribonucleic Acid. K.C. Smith, E. Cordes and R.S. Schweet, Biochim. Biophys. Acta, 33, 286-287 (1959). PDF Reprint
6. Isolation of "Soluble RNA" Without an Ultracentrifuge. K.C. Smith, Biochim. Biophys. Acta, 40, 360-361 (1960). PDF Reprint
7. A New Exchanger for the Chromatographic Fractionation of Nucleic Acids. K.C. Smith, S. Rebhun and H.S. Kaplan, Anal. Biochem., 1, 202-212 (1960). PDF Reprint
8. Radiosensitization of E. coli by Purine and Pyrimidine Analogues Incorporated in Deoxyribonucleic Acid. H.S. Kaplan, K.C. Smith and P. Tomlin, Nature, 190, 794-796 (1961). PDF Reprint
9. A Chromatographic Comparison of the Nucleic Acids from Isologous Newborn, Adult, and Neoplastic Thymus. K.C. Smith and H.S. Kaplan, Cancer Res. 21, 1148-1153 (1961). PDF Reprint
10. A Chemical Basis for the Sensitization of Bacteria to Ultraviolet Light by Incorporated Bromouracil. K.C. Smith, Biochem. Biophys. Res. Commun., 6, 458-463 (1962). PDF Reprint
11. Effect of Halogenated Pyrimidines on Radiosensitivity of E. coli. H.S. Kaplan, K.C. Smith and P.A. Tomlin, Radiat. Res., 16, 98-113 (1962). PDF Reprint
12. Catabolism of Derivatives of Uracil and Cytosine by Rat Tissues. K.C. Smith, J. Neurochem., 9, 277-280 (1962). PDF Reprint
13. Dose Dependent Decrease in Extractability of DNA from Bacteria Following Irradiation with Ultraviolet Light or with Visible Light Plus Dye. K.C. Smith, Biochem. Biophys. Res. Commun., 8, 157-163 (1962). PDF Reprint
14. Studies on the Amino Acid Acceptor RNA in Washed Liver Microsomes. K.C. Smith, Biochemistry, 1, 866-874 (1962). PDF Reprint
15. Photochemical Reactions of Thymine, Uracil, Uridine, Cytosine and Bromouracil in Frozen Solution and in Dried Films. K.C. Smith, Photochem. Photobiol., 2, 503-517 (1963). PDF Reprint
16. The Photochemistry of Thymine and Bromouracil in vivo. K.C. Smith, Photochem. Photobiol., 3, 1-10 (1964). PDF Reprint
17. The Biological Importance of Ultraviolet Light Induced DNA-Protein Crosslinks in Escherichia coli 15 TAU. K.C. Smith, B. Hodgkins and M.E. O'Leary, Biochim. Biophys. Acta, 114, 1-15 (1966). PDF Reprint
18. A Mixed Photoproduct of Uracil and Cysteine (5-S-Cysteine-6-Hydrouracil). A Possible Model for the in vivo Cross-Linking of Deoxyribonucleic Acid and Protein by Ultraviolet Light. K.C. Smith and R.T. Aplin, Biochemistry, 5, 2125-2130 (1966). PDF Reprint
19. Variation in the Photochemical Reactivity of Thymine in the DNA of B. subtilis Spores, Vegetative Cells and Spores Germinated in Chloramphenicol. K.C. Smith and H. Yoshikawa, Photochem. Photobiol., 5, 777-786 (1966). PDF Reprint
20. An Isomer of the Cyclobutane-Type Thymine Dimer Produced in the Presence of Adenine. K.C. Smith, Biochem. Biophys. Res. Commun., 25, 426-433 (1966). PDF Reprint
21. Photoinduced DNA-Protein Cross-Links and Bacterial Killing: A Correlation at Low-Temperatures. K.C. Smith and M.E. O'Leary, Science, 155, 1024-1026 (1967). PDF Reprint
22. Intra-Arterial 5-Bromodeoxyuridine and X-ray Therapy. M.A. Bagshaw, R.L.S. Doggett, K.C. Smith, H.S. Kaplan and T.S. Nelsen, Amer. J. Roentgenol., Radium Ther. and Nucl. Med., 99, 886-894 (1967). PDF Reprint
23. The Response of Uracil-2-14C to X-Irradiation under Nitrogen and Oxygen and to Treatment with Ascorbic Acid. K.C. Smith and J.E. Hays, Radiat. Res., 33, 129-141 (1968). PDF Reprint
24. Kinetics of the Photochemical Addition of [35S]Cysteine to Polynucleotides and Nucleic Acids. K.C. Smith and D.H.C. Meun, Biochemistry, 7, 1033-1037 (1968). PDF Reprint
25. Dark Recovery Processes in Escherichia coli Irradiated with Ultraviolet Light. I. Effect of rec - Mutations on Liquid Holding Recovery. A.K. Ganesan and K.C. Smith, J. Bacteriol., 96, 365-373 (1968). PDF Reprint
26. Nucleic Acids. IX. The Structure and Chemistry of Uridine Photohydrate. W.J. Wechter and K.C. Smith, Biochemistry, 7, 4064-4069 (1968). PDF Reprint
27. The Pitfalls of Measuring DNA Synthesis Kinetics as Exemplified in Ultraviolet Radiation Studies. K.C. Smith and M.E. O'Leary, Biochim. Biophys. Acta, 169, 430-438 (1968). PDF Reprint
28. Lack of in vitro Repair of X-Ray-Induced Chain Breaks in DNA by the Polynucleotide-Joining Enzyme. D.S. Kapp and K.C. Smith, Int. J. Radiat. Biol., 14, 567-571 (1968). PDF Reprint
29. A Micro Phosphate Method. D.H.C. Meun and K.C. Smith, Anal. Biochem., 26, 364-368 (1968). PDF Reprint
30. Dark Recovery Processes in Escherichia coli Irradiated with Ultraviolet Light. II. Effect of uvr Genes on Liquid Holding Recovery. A.K. Ganesan and K.C. Smith, J. Bacteriol., 97, 1129-1133 (1969). PDF Reprint
31. Photochemical Addition of Amino Acids to 14C-Uracil. K.C. Smith, Biochem. Biophys. Res. Commun., 34, 354-357 (1969). PDF Reprint
32. DNA Synthesis in Sensitive and Resistant Mutants of Escherhicha coli B after Ultraviolet Irradiation. K.C. Smith, Mutat. Res., 8, 481-495 (1969). PDF Reprint
33. Chemical Nature of Chain Breaks Produced in DNA by X-Irradiation in vitro. D.S. Kapp and K.C. Smith, Radiat. Res., 42, 34-49 (1970). PDF Reprint
34. Dark-Recovery Processes in Escherichia coli Irradiated with Ultraviolet Light. III. Effect of rec Mutations on the Recovery of Excision-Deficient Mutants of Escherichia coli K-12. A.K. Ganesan and K.C. Smith, J. Bacteriol., 102, 404-410 (1970). PDF Reprint
35. Repair of Radiation-Induced Damage in Escherichia coli. I. Effect of rec Mutations on Post-Replication Repair of Damage Due to Ultraviolet Radiation. K.C. Smith and D.H.C. Meun, J. Mol. Biol., 51, 459-472 (1970). PDF Reprint
36. Repair of Radiation-Induced Damage in Escherichia coli. II. Effect of rec and uvr Mutations on Radiosensitivity and Repair of X-Ray-Induced Single-Strand Breaks in Deoxyribonucleic Acid. D.S. Kapp and K.C. Smith, J. Bacteriol., 103, 49-54 (1970). PDF Reprint
37. A Mixed Photoproduct of Thymine and Cysteine: 5-S-Cysteine, 6-Hydrothymine. K.C. Smith, Biochem. Biophys. Res. Commun., 39, 1011-1016 (1970). PDF Reprint
38. Production and Repair of Radiochemical Damage in Escherichia coli Deoxyribonucleic Acid; Its Modification by Culture Conditions and Relation to Survival. C.D. Town, K.C. Smith and H.S. Kaplan, J. Bacteriol., 105, 127-135 (1971). PDF Reprint
39. The Chemical Inhibition of the Repair of Single-Strand Breaks in DNA: Post-Irradiation Sensitization to X-Rays. D.S. Kapp and K.C. Smith, Int. J. Radiat. Biol., 19, 255-262 (1971). PDF Reprint
40. DNA Polymerase Required for Rapid Repair of X-Ray-Induced DNA Strand Breaks in vivo. C.D. Town, K.C. Smith and H.S. Kaplan, Science, 172, 851-854 (1971). PDF Reprint
41. Effect of Quinacrine on X-Ray Sensitivity and the Repair of Damaged DNA in Escherichia coli K-12. Z. Fuks and K.C. Smith, Radiat. Res., 48, 63-73 (1971). PDF Reprint
42. The Duration of Recovery and DNA Repair in Excision Deficient Derivatives of Escherichia coli K-12 after Ultraviolet Irradiation. A.K. Ganesan and K.C. Smith, Mol. Gen. Genet., 113, 285-296 (1971). PDF Reprint
43. Requirement for Protein Synthesis in rec-Dependent Repair of Deoxyribonucleic Acid in Escherichia coli after Ultraviolet or X Irradiation. A.K. Ganesan and K.C. Smith, J. Bacteriol., 111, 575-585 (1972). PDF Reprint
44. Influence of Ultrafast Repair Processes (Independent of DNA Polymerase I) on the Yield of DNA Single-Strand Breaks in Escherichia coli K-12 X-Irradiated in the Presence or Absence of Oxygen. C.D. Town, K.C. Smith and H.S. Kaplan, Radiat. Res., 52, 99-114 (1972). PDF Reprint
45. Yield of X-Ray-Induced DNA Single-Strand Breaks in Niacin-Starved E. coli K-12. C.D. Town, K.C. Smith and H.S. Kaplan, Int. J. Radiat. Biol., 22, 513-516 (1972). PDF Reprint
46. The Repair of DNA Single-Strand Breaks in E. coli K-12 X-Irradiated in the Presence or Absence of Oxygen; the Influence of Repair on Cell Survival. C.D. Town, K.C. Smith and H.S. Kaplan, Radiat. Res., 55, 334-345 (1973). PDF Reprint
47. X-Ray Sensitivity and Repair Capacity of a polA1 exrA Strain of Escherichia coli K-12. D.A. Youngs and K.C. Smith, J. Bacteriol., 114, 121-127 (1973). PDF Reprint
48. Modification of DNA Repair and Survival of X-Irradiated pol, rec, and exr Mutants of Escherichia coli K-12 by 2,4-Dinitrophenol. E. Van der Schueren, K.C. Smith and H.S. Kaplan, Radiat. Res., 55, 346-355 (1973). PDF Reprint
49. Sensitivity to X-Radiation of Strains of Escherichia coli K-12 which Lack DNA Polymerase II. D.A. Youngs and K.C. Smith, Mol. Gen. Genet., 122, 287-290 (1973). PDF Reprint
50. The Synergistic Action of Ultraviolet and X Radiation on Mutants of Escherichia coli K-12. K.D. Martignoni and K.C. Smith, Photochem. Photobiol., 18, 1-8 (1973). PDF Reprint
51. Involvement of DNA Polymerase III in Excision Repair after Ultraviolet Irradiation. D.A. Youngs and K.C. Smith, Nature New Biol., 244, 240-241 (1973). PDF Reprint
52. Evidence for the Control by exrA and polA Genes of Two Branches of the uvr Gene-Dependent Excision Repair Pathway in Escherichia coli K-12. D.A. Youngs and K.C. Smith, J. Bacteriol., 116, 175-182 (1973). PDF Reprint
53. Changes in Survival of Escherichia coli K-12 Cells as a Function of the Medium in Which They are X-Irradiated: A rec and exr Gene-Dependent Phenomenon. E. Van der Schueren, D.A. Youngs and K.C. Smith, Int. J. Radiat. Biol., 24, 355-362 (1973). PDF Reprint
54. Inhibition of the exrA Gene-Dependent Branch of the DNA Excision Repair System in Escherichia coli K-12 by 2,4-Dinitrophenol. E. Van der Schueren and K.C. Smith, Photochem. Photobiol., 19, 95-102 (1974). PDF Reprint
55. Separate Branches of the uvr Gene-Dependent Excision Repair Process in Ultraviolet-Irradiated Escherichia coli K-12 Cells; Their Dependence Upon Growth Medium and the polA, recA, recB, and exrA Genes. D.A. Youngs, E. Van der Schueren and K.C. Smith, J. Bacteriol., 117, 717-725 (1974). PDF Reprint
56. Effect of Quinacrine on Survival and DNA Repair in X-Irradiated Chinese Hamster Cells. N. Voiculetz, K.C. Smith and H.S. Kaplan, Cancer Res., 34, 1038-1044 (1974). PDF Reprint
57. Sensitization of Ultraviolet-Irradiated Escherichia coli K-12 by Different Agars: Inhibition of a rec and exr Gene-Dependent Branch of the uvr Gene-Dependent Excision-Repair Process. E. Van der Schueren, D.A. Youngs and K.C. Smith, Photochem. Photobiol., 20, 9-13 (1974). PDF Reprint
58. On the Nature of the Oxygen Effect on X-Ray-Induced DNA Single-Strand Breaks in Mammalian Cells. R. Roots and K.C. Smith, Int. J. Radiat. Biol., 26, 467-480 (1974). PDF Reprint
59. Enzymatic Production of Deoxyribonucleic Acid Double-Strand Breaks After Ultraviolet Irradiation of Escherichia coli K-12. T. Bonura and K.C. Smith, J. Bacteriol., 121, 511-517 (1975). PDF Reprint
60. The Influence of Oxygen on the Yield of DNA Double-Strand Breaks in X-Irradiated Escherichia coli K-12. T. Bonura, C.D. Town, K.C. Smith and H.S. Kaplan, Radiat. Res., 63, 567-577 (1975). PDF Reprint
61. Rejoining of DNA Single-Strand Breaks in Mammalian Cells Incubated in Buffer or in Medium After Aerobic or Anaerobic X-Irradiation. R. Roots and K.C. Smith, Int. J. Radiat. Biol., 27, 595-602 (1975). PDF Reprint
62. Enzymatic Induction of DNA Double-Strand Breaks in gamma-Irradiated Escherichia coli K-12. T. Bonura, K.C. Smith, and H.S. Kaplan, Proc. Nat. Acad. Sci. USA, 72, 4265-4269 (1975). PDF Reprint
63. Quantitative Evidence for Enzymatically-Induced DNA Double-Strand Breaks as Lethal Lesions in UV Irradiated pol+ and polA1 Strains of E. coli K-12. T. Bonura and K.C. Smith, Photochem. Photobiol., 22, 243-248 (1975). PDF Reprint
64. R.B.E. of 50 kVp X-Rays and 660 keV gamma-Rays (137Cs) with Respect to the Production of DNA Damage, Repair and Cell-Killing in Escherichia coli K-12. T. Bonura, D.A. Youngs and K.C. Smith, Int. J. Radiat. Biol., 28, 539-548 (1975). PDF Reprint
65. Genetic Control of Multiple Pathways of Post-Replicational Repair in uvrB Strains of Escherichia coli K-12. D.A. Youngs and K.C. Smith, J. Bacteriol., 125, 102-110 (1976). PDF Reprint
66. The Involvement of Indirect Effects in Cell-Killing and DNA Double-Strand Breakage in gamma-Irradiated Escherichia coli K-12. T. Bonura and K.C. Smith, Int. J. Radiat. Biol., 29, 293-296 (1976). PDF Reprint
67. The Yield and Repair of X-Ray-Induced Single-Strand Breaks in the DNA of Escherichia coli K-12 Cells. D.A. Youngs and K.C. Smith, Radiat. Res., 68, 148-154 (1976). PDF Reprint
68. Effects of Actinomycin D on Cell Cycle Kinetics and the DNA of Chinese Hamster and Mouse Mammary Tumor Cells Cultivated in vitro. R. Roots and K.C. Smith, Cancer Res., 36, 3654-3658 (1976). PDF Reprint
69. Role of Deoxyribonucleic Acid Polymerase III in the Repair of Single-Strand Breaks Produced in Escherichia coli Deoxyribonucleic Acid by Gamma Radiation. C. Hamelin, D.A. Youngs and K.C. Smith, J. Bacteriol., 127, 1307-1314 (1976). PDF Reprint
70. Ultraviolet Radiation-Induced Mutability of uvrD3 Strains of Escherichia coli B/r and K-12: A Problem in Analyzing Mutagenesis Data. K.C. Smith, Photochem. Photobiol., 24, 433-437 (1976). PDF Reprint
71. Protection of Escherichia coli Cells Against the Lethal Effects of Ultraviolet and X Irradiation by Prior X Irradiation: A Genetic and Physiological Study. K.C. Smith and K.D. Martignoni, Photochem. Photobiol., 24, 515-523 (1976). PDF Reprint
72. Single-Strand Breaks in the DNA of the uvrA and uvrB Strains of Escherichia coli K-12 After Ultraviolet Irradiation. D.A. Youngs and K.C. Smith, Photochem. Photobiol., 24, 533-541 (1976). PDF Reprint
73. DNA Synthesis Kinetics, Cell Division Delay, and Post-Replication Repair After UV Irradiation of Frozen Cells of E. coli B/r. K.C. Smith and C. Hamelin, Photochem. Photobiol., 25, 27-29 (1977). PDF Reprint
74. Effect of Quinacrine on Survival of Ultraviolet-Irradiated uvr, rec, lex and pol Mutants of Escherichia coli K-12. Z. Fuks and K.C. Smith, Photochem. Photobiol., 25, 209-210 (1977). PDF Reprint
75. The Involvement of Polynucleotide Ligase in the Repair of UV-Induced DNA Damage in Escherichia coli K-12 Cells. D.A. Youngs and K.C. Smith, Mol. Gen. Genet., 152, 37-41 (1977). PDF Reprint
76. Influence of a uvrD Mutation on Survival and Repair of X-Irradiated Escherichia coli K-12 Cells. E. Van der Schueren, D.A. Youngs, and K.C. Smith, Int. J. Radiat. Biol., 31, 507-518 (1977). PDF Reprint
77. Sensitization of Escherichia coli C to Gamma-Radiation by 5-Bromouracil Incorporation. T. Bonura and K.C. Smith, Int. J. Radiat. Biol., 32, 457-464 (1977). PDF Reprint
78. Ultraviolet Radiation-Induced Mutability of Isogenic uvrA and uvrB Strains of Escherichia coli K-12 W3110. T.R. Barfknecht and K.C. Smith, Photochem. Photobiol., 26, 643-645 (1977). PDF Reprint
79. Genetic Location of the phr Gene of Escherichia coli K-12. D.A. Youngs and K.C. Smith, Mutat. Res., 51, 133-137 (1978). PDF Reprint
80. The Involvement of DNA Polymerase I in the Postreplication Repair of Ultraviolet Radiation-Induced Damage in Escherichia coli K-12. T.R. Barfknecht and K.C. Smith, Mol. Gen. Genet., 167, 37-41 (1978). PDF Reprint
81. Enzymatic Photoreactivation of Escherichia coli after Ionizing Irradiation: Chemical Evidence for the Production of Pyrimidine Dimers. T.V. Wang and K.C. Smith, Radiat. Res., 76, 540-548 (1978). PDF Reprint
82. Multiple, Independent Components of Ultraviolet Radiation Mutagenesis in Escherichia coli K-12 uvrB5. N.J. Sargentini and K.C. Smith, J. Bacteriol., 140, 436-444 (1979). PDF Reprint
83. Involvement of Genes uvrD and recB in Separate Mutagenic Deoxyribonucleic Acid Repair Pathways in Escherichia coli K-12 uvrB5 and B/r uvrA155. N.J. Sargentini and K.C. Smith, J. Bacteriol., 143, 212-220 (1980). PDF Reprint
84. Radiosensitivity in vitro of Human Fibroblasts Derived from Patients with a Severe Skin Reaction to Radiation Therapy. K.C. Smith, G.M. Hahn, R.T. Hoppe and J.D. Earle, Int. J. Radiation Oncology Biol. Phys., 6, 1573-1575 (1980). PDF Reprint
85. Cerenkov Ultraviolet Radiation (137Cs gamma-Rays) and Direct Excitation (137Cs gamma-Rays and 50 kVp X-Rays) Produce Photoreactivable Damage in Escherichia coli. S.H. Moss and K.C. Smith, Int. J. Radiat. Biol., 38, 323-334 (1980). PDF Reprint
86. The Expression of Liquid Holding Recovery in Ultraviolet-Irradiated Escherichia coli Requires a Deficiency in Growth Medium-Dependent DNA Repair. M. Tang and K.C. Smith, Photochem. Photobiol., 32, 763-769 (1980). PDF Reprint
87. The Effects of lexA101, recB21, recF143 and uvrD3 Mutations on Liquid-Holding Recovery in Ultraviolet-Irradiated Escherichia coli K-12 recA56. M. Tang and K.C. Smith, Mutat. Res., 80, 15-25 (1981). PDF Reprint
88. Membrane Damage can be a Significant Factor in the Inactivation of Escherichia coli by Near-Ultraviolet Radiation. S.H. Moss and K.C. Smith, Photochem. Photobiol., 33, 203-210 (1981). PDF Reprint
89. Sensitivity of DNA Repair-Deficient Strains of Escherichia coli K-12 to Various Furocoumarins and Near-Ultraviolet Radiation. L.I. Grossweiner and K.C. Smith, Photochem. Photobiol., 33, 317-323 (1981). PDF Reprint
90. Much of Spontaneous Mutagenesis in Escherichia coli is due to Error-Prone DNA Repair: Implications for Spontaneous Carcinogenesis. N.J. Sargentini and K.C. Smith, Carcinogenesis, 2, 863-872 (1981). PDF Reprint
91. Effect of recB21, uvrD3, lexA101 and recF143 Mutations on Ultraviolet Radiation Sensitivity and Genetic Recombination in delta-uvrB Strains of Escherichia coli K-12. T.V. Wang and K.C. Smith, Mol. Gen. Genet., 183, 37-44 (1981). PDF Reprint
92. Effect of the uvrD3 Mutation on Ultraviolet Radiation-Induced DNA-Repair Replication in Escherichia coli K12. K.M. Carlson and K.C. Smith, Mutat. Res., 84, 257-262 (1981). PDF Reprint
93. Effects of the ssb-1 and ssb-113 Mutations on Survival and DNA Repair in UV-Irradiated delta-uvrB Strains of Escherichia coli K-12. T.V. Wang and K.C. Smith, J. Bacteriol., 151, 186-192 (1982). PDF Reprint
94. Postreplication Repair in uvrA and uvrB Strains of Escherichia coli K-12 is Inhibited by Rich Growth Medium. R.C. Sharma, T.R. Barfknecht and K.C. Smith, Photochem. Photobiol., 36, 307-311 (1982). PDF Reprint
95. A Mutation (radA100) in Escherichia coli that Selectively Sensitizes Cells Grown in Rich Medium to X- or U.V.-Radiation, or Methyl Methanesulphonate. W.P. Diver, N.J. Sargentini and K.C. Smith, Int. J. Radiat. Biol., 42, 339-346 (1982). PDF Reprint
96. Three Mechanisms for Ultraviolet Radiation Mutagenesis in Escherichia coli K-12 uvrB5: Specificity for the Production of Back and Suppressor Mutants. N.J. Sargentini, R.C. Bockrath and K.C. Smith, Mutat. Res., 106, 217-224 (1982). PDF Reprint
97. The Effect of Growth Conditions on Inducible, recA-Dependent Resistance to X Rays in Escherichia coli. N.J. Sargentini, W.P. Diver and K.C. Smith, Radiat. Res., 93, 364-380 (1983). PDF Reprint
98. Characterization of an Escherichia coli Mutant (radB101) Sensitive to gamma and UV Radiation, and Methyl Methanesulfonate. N.J. Sargentini and K.C. Smith, Radiat. Res., 93, 461-478 (1983). PDF Reprint
99. New Mutation (mmrA1) in Escherichia coli K-12 That Affects Minimal Medium Recovery and Postreplication Repair After UV Irradiation. R.C. Sharma, N.J. Sargentini and K.C. Smith, J. Bacteriol., 154, 743-747 (1983). PDF Reprint
100. Inducible Postreplication Repair is Responsible for Minimal Medium Recovery in UV-Irradiated Escherichia coli K-12. R.C. Sharma and K.C. Smith, Photochem. Photobiol., 38, 301-303 (1983). PDF Reprint
101. Mechanisms for recF-Dependent and recB-Dependent Pathways of Postreplication Repair in UV-Irradiated Escherichia coli uvrB. T.V. Wang and K.C. Smith, J. Bacteriol., 156, 1093-1098 (1983). PDF Reprint
102. Characterization of a New Radiation-Sensitive Mutant, Escherichia coli K-12 radC102. I. Felzenszwalb, N.J. Sargentini and K.C. Smith, Radiat. Res., 97, 615-625 (1984). PDF Reprint
103. recF-Dependent and recF recB-Independent DNA Gap-Filling Repair Processes Transfer Dimer-Containing Parental Strands to Daughter Strands in Escherichia coli K-12 uvrB. T.V. Wang and K.C. Smith, J. Bacteriol., 158, 727-729 (1984). PDF Reprint
104. Rich Growth Medium Enhances Ultraviolet Radiation Sensitivity and Inhibits Cell Division in ssb Mutants of Escherichia coli K-12. T.V. Wang and K.C. Smith, Photochem. Photobiol., 39, 793-797 (1984). PDF Reprint
105. umuC-Dependent and umuC-Independent gamma- and UV-Radiation Mutagenesis in Escherichia coli. N.J. Sargentini and K.C. Smith, Mutat. Res., 128, 1-9 (1984). PDF Reprint
106. Role of the umuC Gene in Postreplication Repair in UV-Irradiated Escherichia coli K-12 uvrB. T.V. Wang and K.C. Smith, Mutat. Res., 145, 107-112. (1985). PDF Reprint
107. A Minor Pathway of Postreplication Repair in Escherichia coli is Independent of the recB, recC and recF Genes. R.C. Sharma and K.C. Smith, Mutat. Res., 146, 169-176 (1985). PDF Reprint
108. A Mechanism for Rich-Medium Inhibition of the Repair of Daughter-Strand Gaps in the Deoxyribonucleic Acid of UV-Irradiated Escherichia coli K12 uvrA. R.C. Sharma and K.C. Smith, Mutat. Res., 146, 177-183 (1985). PDF Reprint
109. Growth-Medium-Dependent Repair of DNA Single-Strand and Double-Strand Breaks in X-Irradiated Escherichia coli. N.J. Sargentini and K.C. Smith, Radiat. Res., 104, 109-115 (1985). PDF Reprint
110. Mechanism of sbcB-Suppression of the recBC-Deficiency in Postreplication Repair in UV-Irradiated Escherichia coli K-12. T.V. Wang and K.C. Smith, Mol. Gen. Genet., 201, 186-191 (1985). PDF Reprint
111. Postreplicational Formation and Repair of DNA Double-Strand Breaks in UV-Irradiated Escherichia coli uvrB Cells. T.V. Wang and K.C. Smith, Mutat. Res., 165, 39-44 (1986). PDF Reprint
112. Postreplication Repair in Ultraviolet-Irradiated Human Fibroblasts: Formation and Repair of DNA Double-Strand Breaks. T.V. Wang and K.C. Smith, Carcinogenesis 7, 389-392 (1986). PDF Reprint
113. Characterization and Quantitation of DNA Strand Breaks Requiring recA-Dependent Repair in X-Irradiated Escherichia coli. N.J. Sargentini and K.C. Smith, Radiat. Res., 105, 180-186 (1986). PDF Reprint
114. Inviability of dam recA and dam recB Cells of Escherichia coli is Correlated with Their Inability to Repair DNA Double-Strand Breaks Produced by Mismatch Repair. T.V. Wang and K.C. Smith, J. Bacteriol., 165, 1023-1025 (1986). PDF Reprint
115. Escherichia coli radC is Deficient in the recA-Dependent Repair of X-Ray-Induced DNA Strand Breaks. I. Felzenszwalb, N.J. Sargentini and K.C. Smith, Radiat. Res., 106, 166-170 (1986). PDF Reprint
116. Mutagenesis By Normal Metabolites in Escherichia coli: Phenylalanine Mutagenesis is Dependent on Error-Prone DNA Repair. N.J. Sargentini and K.C. Smith, Mutat. Res., 161, 113-118 (1986). PDF Reprint
117. Role of the radB Gene in Postreplication Repair in UV-Irradiated Escherichia coli uvrB. N.J. Sargentini and K.C. Smith, Mutat. Res., 166, 17-22 (1986). PDF Reprint
118. Repair of DNA Double-Strand Breaks in UV-Irradiated Escherichia coli uvrB recF Cells is Inhibited By Rich Growth Medium. R.C. Sharma and K.C. Smith, Mutat. Res., 166, 23-28 (1986). PDF Reprint
119. Quantitation of the Involvement of the recA, recB, recC, recF, recJ, recN, lexA, radA, radB, uvrD, and umuC Genes in the Repair of X-Ray-Induced DNA Double-Strand Breaks in Escherichia coli. N.J. Sargentini and K.C. Smith, Radiat. Res., 107, 58-72 (1986). PDF Reprint
120. recA (Srf) Suppression of recF Deficiency in the Postreplication Repair of UV-Irradiated Escherichia coli K-12. T.V. Wang and K.C. Smith, J. Bacteriol., 168, 940-946 (1986). PDF Reprint
121. A Model For the recA-Dependent Repair of Excision Gaps in UV-Irradiated Escherichia coli. K.C. Smith and R.C. Sharma, Mutat. Res., 183, 1-9 (1987). PDF Reprint
122. Ionizing and Ultraviolet Radiation-Induced Reversion of Sequenced Frameshift Mutations in Escherichia coli: A New Role for umuDC Suggested by Delayed Photoreactivation. N.J. Sargentini and K.C. Smith, Mutat. Res., 179, 55-63 (1987). PDF Reprint
123. Comparison of the rep-38 and mmrA1 Mutations of Escherichia coli. R.C. Sharma and K.C. Smith., Mutat. Res., 184, 23-28 (1987). PDF Reprint
124. Role of DNA Polymerase I in Postreplication Repair: a Reexamination with Escherichia coli delta-polA. R.C. Sharma and K.C. Smith, J. Bacteriol., 169, 4559-4564 (1987). PDF Reprint
125. Genetic and Phenotypic Analyses Indicating Occurrence of the recN262 and radB101 Mutations at the Same Locus in Escherichia coli. N.J. Sargentini and K.C. Smith, J. Bacteriol., 170, 2392-2394 (1988). PDF Reprint
126. Different Effects of recJ and recN Mutations on the Postreplication Repair of UV-Damaged DNA in Escherichia coli K-12. T.V. Wang and K.C. Smith, J. Bacteriol., 170, 2555-2559 (1988). PDF Reprint
127. Mutational Spectrum Analysis of umuC-Independent and umuC-Dependent gamma-Radiation Mutagenesis in Escherichia coli. N.J. Sargentini and K.C. Smith, Mutat. Res., 211, 193-203 (1989). PDF Reprint
128. The Roles of RecBCD, Ssb and RecA in the Formation of Heteroduplexes from Linear-Duplex DNA in vitro. T.V. Wang and K.C. Smith, Mol. Gen. Genet., 216, 315-320 (1989). PDF Reprint
129. Role of ruvAB Genes in UV- and gamma-Radiation and Chemical Mutagenesis in Escherichia coli. N.J. Sargentini and K.C. Smith, Mutat. Res., 215, 115-129 (1989). PDF Reprint
130. Discontinuous DNA Replication in a lig-7 Strain of Escherichia coli is Not the Result of Mismatch Repair, Nucleotide-Excision Repair, or the Base-Excision Repair of DNA Uracil. T.V. Wang and K.C. Smith, Biochem. Biophys. Res. Commun., 165, 685-688 (1989). PDF Reprint
131. Involvement of RecB-Mediated (but Not RecF-Mediated) Repair of DNA Double-Strand Breaks in the gamma-Radiation Production of Long Deletions in Escherichia coli. N.J. Sargentini and K.C. Smith, Mutat. Res., 265, 83-101 (1992). PDF Reprint
132. Properties of R-Plasmid pEB017, Which Confers both Enhanced UV-Radiation Resistance and Mutability to Wild-Type, recA and umuC Strains of Escherichia coli K12. E.E. Obaseiki-Ebor and K.C. Smith, Mutat. Res., 267, 67-76 (1992). PDF Reprint
133. DNA sequence analysis of gamma-radiation (anoxic)-induced and spontaneous lacI(d) mutations in Escherichia coli K-12. N.J. Sargentini and K.C. Smith, Mutat. Res. 309, 147-163 (1994). PDF Reprint
134. DNA sequence analysis of spontaneous and gamma-radiation (anoxic)-induced lacI(d) mutations in Escherichia coli umuC122::Tn5. Differential requirement for umuC at G:C vs. A:T sites and for the production of transversions vs. transitions. N.J. Sargentini and K.C. Smith, Mutat. Res. 311, 175-189 (1994). PDF Reprint
[ TOP ]
B. REVIEW ARTICLES AND SYMPOSIA LECTURES1. Photochemistry of the Nucleic Acids. K.C. Smith, in Photophysiology, Volume 2, pp. 329-388 (A.C. Giese, ed.), Academic Press, Inc., N.Y. (1964).
2. The Photochemical Interaction of Deoxyribonucleic Acid and Protein in vivo and its Biological Importance. K.C. Smith, Photochem. Photobiol., 3, 415-427 (1964). PDF Reprint
3. Physical and Chemical Changes Induced in Nucleic Acids by Ultraviolet Light. K.C. Smith, Radiat. Res., Suppl. 6, 54-79 (1966).
4. Biologically Important Damage to DNA by Photoproducts Other Than Cyclobutane-Type Thymine Dimers. K.C. Smith, in Radiation Research, pp. 756-770 (G. Silini, ed.), North-Holland Publishing Co., Amsterdam (1967). PDF Reprint
5. Intra-Arterial 5-Bromodeoxyuridine and X-Ray Therapy. M.A. Bagshaw, R.L.S. Doggett, K.C. Smith, H.S. Kaplan and T.S. Nelsen, in Progress in Biomedical Engineering, pp. 43-55 (L.J. Fogel and F.W. George, eds.), Spartan Books, Washington D.C. (1967).
6. The Biological Importance of U.V.-Induced DNA-Protein Cross-Linking in vivo and its Probable Chemical Mechanism. K.C. Smith, Photochem. Photobiol., 7, 651-660 (1968). PDF Reprint
7. Recovery of Recombination Deficient Mutants of Escherichia coli K-12 from Ultraviolet Irradiation. A.K. Ganesan and K.C. Smith, Cold Spring Harbor Symp. Quant. Biol., 33, 235-242 (1968). PDF Reprint
8. Biochemical Effects of Ultraviolet Light on DNA. K.C. Smith, in The Biologic Effects of Ultraviolet Radiation, pp. 47-56 (F. Urbach, ed.), Pergamon Press, Oxford (1969). PDF Reprint
9. The Photochemical Addition of Amino Acids and Proteins to Nucleic Acids. K.C. Smith, in Photochemistry of Macromolecules, pp. 31-37 (R.F. Reinisch, ed.), Plenum Press, N.Y. (1970). PDF Reprint
10. The Roles of Genetic Recombination and DNA Polymerase in the Repair of Damaged DNA. K.C. Smith, in Photophysiology, Volume 6, pp. 209-278 (A.C. Giese, ed.), Academic Press, N.Y. (1971).
11. Dark Repair of DNA Damage. K.C. Smith, in Research Progress in Organic, Biological and Medicinal Chemistry, Volume 3, Part 1, pp. 356-382 (V. Gallo and L. Santamaria, eds.), North-Holland Publishing Co., Amsterdam (1972). PDF Reprint
12. The Biological Effects of Ultraviolet Radiation on Man, Animals and Plants. K.C. Smith, Climatic Impact Assessment Program, Proceedings of the Survey Conference, February 15-16, 1972 (A.E. Barrington, ed.) Department of Transportation, Document DOT-TSC-OST-72-13, pp. 243-250, Washington, D.C. (1972).
13. Repair of X-Ray Damage to Bacterial DNA. C.D. Town, K.C. Smith and H.S. Kaplan, in Current Topics in Radiation Research Quarterly, Volume 8, pp. 351-399 (M. Ebert and A. Howard, eds.), North-Holland Publishing Co., Amsterdam (1973). PDF Reprint
14. Prior Irradiation Can Sensitize or Protect Bacterial Cells From Subsequent Irradiation: A Genetic and Biochemical Study. K.C. Smith and K.D. Martignoni, in Novas Tendencias Em Fotobiologia, Anais da Academia Brasileira de Ciencias, Volume 45, Suppl., 135-147 (1973). PDF Reprint
15. Genetic Control and Chemical Inhibition of the Repair of Radiation Damage to Bacterial DNA. D.S. Kapp and K.C. Smith, in Advances in Radiation Research, Biology and Medicine, Volume 1, pp. 83-93 (J.F. Duplan and A. Chapiro, eds.), Gordon and Breach, London (1973). PDF Reprint
16. Photoaddition of Proteins and Other Molecules to Nucleic Acids. K.C. Smith, in Progress in Photobiology (G.O. Schenck, ed.) Article 017, Deutsche Gesellschaft fur Lichtforschung e.V., Frankfurt (1974).
17. Molecular Changes in the Nucleic Acids Produced by Ultraviolet and Visible Radiation. K.C. Smith, in Sunlight and Man, pp. 57-66 (T.B. Fitzpatrick, M.A. Pathak, L.C. Harber, M. Seiji and A. Kukita, eds.), University of Tokyo Press, Tokyo (1974). PDF Reprint
18. Cellular Repair of Radiation Damage. K.C. Smith, in Sunlight and Man, pp. 67-77 (T.B. Fitzpatrick, M.A. Pathak, L.C. Harber, M. Seiji and A. Kukita, eds.), University of Tokyo Press, Tokyo (1974). PDF Reprint
19. The Inhibition of DNA Repair Processes. K.C. Smith, Excerpta Medica International Congress Series No. 353, Volume 5, pp. 105-110, Surgery Radiotherapy and Chemotherapy of Cancer. Proceedings of the XI International Cancer Congress, Florence, 1974, Excerpta Medica, Amsterdam (1975). PDF Reprint
20. Involvement of uvrD, exrA and recB Genes in the Control of the Postreplicational Repair Process. D.A. Youngs, E. Van der Schueren and K.C. Smith, in Molecular Mechanisms for Repair of DNA, Part A, pp. 331-333, (P.C. Hanawalt and R.B. Setlow, eds.), Plenum Press, N.Y. (1975).
21. Dependence Upon Growth Medium and the polA, polC, recA, recB, recC, and exrA Genes on Separate Branches of the uvr Gene-Dependent Excision-Repair Process in Escherichia coli K-12 cells. K.C. Smith, D.A. Youngs and E. Van der Schueren, in Molecular Mechanisms for Repair of DNA, Part B, pp. 443-451, (P.C. Hanawalt and R.B. Setlow, eds.,), Plenum Press, N.Y. (1975).
22. The Radiation-Induced Addition of Proteins and Other Molecules to Nucleic Acids. K.C. Smith, in Photochemistry and Photobiology of Nucleic Acids, Volume 2, pp. 187-218 (S.Y. Wang, ed.) Academic Press, N.Y. (1976).
23. Radiation-Induced Cross-Linking of DNA and Protein in Bacteria. K.C. Smith, in Aging, Carcinogenesis and Radiation Biology, pp. 67-81 (K.C. Smith, ed.) Plenum Press, N.Y. (1976). PDF Reprint
24. Chemical Adducts to Deoxyribonucleic Acid: Their Importance to the Genetic Alteration Theory of Aging. K.C. Smith, Interdiscipl. Topics Geront., 9, 16-24 (1976).
25. Photoreactions in Biological Macromolecular Complexes (Introductory Remarks). K.C. Smith, in Research in Photobiology, pp. 29-30 (A. Castellani, ed.) Plenum Press, N.Y. (1977).
26. Ultraviolet Radiation Effects on Molecules and Cells. K.C. Smith, in The Science of Photobiology, pp. 113-142 (K.C. Smith, ed.) Plenum Press, N.Y. (1977).
27. New Topics in Photobiology. K.C. Smith, in The Science of Photobiology, pp. 397-417 (K.C. Smith, ed.) Plenum Press, N.Y. (1977).
28. Aging, Carcinogenesis and Radiation Biology. K.C. Smith, Prog. Biochem. Pharmacol., 14, 70-75 (1978).
29. Multiple Pathways of DNA Repair in Bacteria and Their Roles in Mutagenesis. K.C. Smith, Photochem. Photobiol., 28, 121-129 (1978). PDF Reprint
30. Photoreactivation of Escherichia coli Irradiated with Ionizing Radiation. T.V. Wang and K.C. Smith, in DNA Repair Mechanisms, pp. 151-154 (P.C. Hanawalt, E.C. Friedberg, and C.F. Fox, ed.) Academic Press, N.Y. (1978). PDF Reprint
31. Excision Repair and Mutagenesis are Complex Processes. K.C. Smith, D.A. Youngs, E. Van der Schueren, K.M. Carlson, and N.J. Sargentini, in DNA Repair Mechanisms, pp. 247-250 (P.C. Hanawalt, E.C. Friedberg, and C.F. Fox, ed.) Academic Press, N.Y. (1978).
32. Multiple Pathways of DNA Repair and Their Possible Roles in Mutagenesis. K.C. Smith, in International Conference on Ultraviolet Carcinogenesis, pp. 107-114 (M.L. Kripke and E.R. Sass, ed.) NCI Monograph 50 (1978).
33. Molecular Aspects of the Interaction of Far-Ultraviolet Radiation with Living Matter. K.C. Smith, in International Symposium on Current Topics in Radiobiology and Photobiology, pp. 61-72 (R.M. Tyrrell, ed.) Academia Brasileira de Ciencias, Rio de Janeiro (1978).
34. Common Misconceptions About Light. K.C. Smith, in Lasers in Photomedicine and Photobiology, pp. 23-25 (R. Pratesi and C.A. Sacchi, ed.) Springer-Verlag, Berlin (1980). PDF Reprint
35. Photobiology of Ultraviolet Radiation. K.C. Smith, in Lasers in Photomedicine and Photobiology, pp. 40-47 (R. Pratesi and C.A. Sacchi, ed.) Springer-Verlag, Berlin (1980).
36. Measurement of DNA-Protein Cross-Links in Prokaryotes. K.C. Smith, in DNA Repair: A Laboratory Manual of Research Procedures, Volume 1, Part A, pp. 83-87 (E.C. Friedberg and P.C. Hanawalt, ed.) Marcel Dekker, N.Y. (1980).
37. Unsolved Problems in Photobiology. K.C. Smith, in Lasers in Biology and Medicine, pp. 289-297 (F. Hillenkamp, R. Pratesi and C.A. Sacchi, ed.) Plenum Press, N.Y. (1980).
38. Photobiology and Photomedicine: The Future is Bright. K.C. Smith, J. Invest. Dermatol., 77, 2-7 (1981). PDF Reprint
39. The Trends and Future of Photobiology: Biochemical and Genetic Aspects. K.C. Smith, in Trends in Photobiology, pp. 243-249 (C. Helene, M. Charlier, T. Montenay-Garestier and G. Laustriat, ed.) Plenum Press, N.Y. (1982).
40. Radiation-Produced Changes in DNA and Their Repair. K.C. Smith, in Mechanism of Radiation Injury, pp. 347-360 (O. Yamamoto, ed.) Japan Scientific Societies Press, Tokyo (1982) (In Japanese).
41. Escherichia coli K-12 radC102: Isolation, Characterization and Interaction with Different Mutations. I. Felzenszwalb, N.J. Sargentini and K.C. Smith, in Cellular Responses to DNA Damage, pp. 409-416 (E.C. Friedberg and B.A. Bridges, ed.) Alan R. Liss, Inc., N.Y. (1983). PDF Reprint
42. Spontaneous Mutagenesis: The Roles of DNA Repair, Replication, and Recombination. N.J. Sargentini and K.C. Smith, Mutat. Res., 154, 1-27 (1985). PDF Reprint
43. Metabolically-Produced 'UV-Like' DNA Damage and Its Role in Spontaneous Mutagenesis. K.C. Smith and N.J. Sargentini, Photochem. Photobiol., 42, 801-803 (1985). PDF Reprint
44. Mechanisms of Spontaneous Mutagenesis: Implications for Spontaneous Carcinogenesis. K.C. Smith and N.J. Sargentini, in Radiation Carcinogenesis and DNA Alterations, pp. 359-371 (F.J. Burns, A.C. Upton and G. Silini, ed.) Plenum Press, N.Y. (1986). PDF Reprint
45. New DNA Repair Systems and New Insights on Old Systems in Escherichia coli. K.C. Smith, N.J. Sargentini, R.C. Sharma and T.V. Wang, in Radiation Carcinogenesis and DNA Alterations, pp. 499-509 (F.J. Burns, A.C. Upton and G. Silini, ed.) Plenum Press, N.Y. (1986).
46. recA-Dependent DNA Repair in UV-Irradiated Escherichia coli. K.C. Smith, T.V. Wang and R.C. Sharma, J. Photochem. Photobiol., B: Biology, 1, 1-11 (1987). PDF Reprint
47. recA-Dependent Repair of DNA Gaps and Double-strand Breaks After UV Irradiation. K.C. Smith, T.V. Wang and R.C. Sharma, in Radiation Research, Vol. 2, pp. 382-387 (E.M. Fielden, J.F. Fowler, J.H. Hendry and D. Scott, ed.) Taylor & Francis, London (1987).
48. Multiple Pathways of Postreplication Repair. K.C. Smith and T.V. Wang, in Mechanisms and Consequences of DNA Damage Processing, pp. 477-484 (E.C. Friedberg and P.C. Hanawalt, ed.), Alan R. Liss, Inc., N.Y. (1988).
49. recA-Dependent DNA Repair Processes. K.C. Smith and T.V. Wang, BioEssays 10, 12-16 (1989). PDF Reprint
50. Photochemistry, L.I. Grossweiner and K.C. Smith, in The Science of Photobiology, pp. 47-78 (K.C. Smith, ed.), Plenum Press, NY (1989).
51. UV Radiation Effects (DNA Repair and Mutagenesis), K.C. Smith, in The Science of Photobiology, pp. 111-133 (K.C. Smith, ed.), Plenum Press, NY (1989).
52. Light and Life: The Photobiological Basis of the Therapeutic Use of Radiation From Lasers, K.C. Smith, in Progress in Laser Therapy (Selected papers from the October 1990 ILTA Congress), pp. 11-18 (T. Ohshiro and R.G. Calderhead, ed.), John Wiley & Sons, Chichester, England, (1991).
53. The Photobiological Basis of Low Level Laser Radiation Therapy. K.C. Smith, Laser Therapy 3, 19-24 (1991). PDF Reprint
54. umuC-Independent, recA-Dependent Mutagenesis. K.C. Smith and N.J. Sargentini, Photobiology, pp. 169-176 (E. Riklis, ed.) Plenum Press, N.Y. (1991). PDF Reprint
55. Spontaneous Mutagenesis: Experimental, Genetic and Other Factors, K.C. Smith, Mutat. Res., 277, 139-162 (1992). PDF Reprint
56. Recombinational DNA repair: the ignored repair systems, K.C. Smith, BioEssays 26, 1322-1326 (2004). PDF Reprint
57. Laser and LED Photobiology, K.C. Smith, Laser Therapy 19: 72-78 (2010). PDF Reprint
58. Molecular Targets for Low Level Light Therapy, K.C. Smith, Laser Therapy 19: 135-142 (2010). PDF Reprint
[ TOP ]
C. GENERAL ARTICLES1. The Science of Photobiology. K.C. Smith, BioScience, 24, 45-48 (1974). PDF Reprint
2. Photobiology: A New Scientific Frontier. K.C. Smith, Nursing Digest, 2, 62-67 (1974). PDF Reprint
3. Obituary: A. Douglas McLaren. L. Packer, J. Seear, and K.C. Smith, Photochem. Photobiol., 30, 323-324 (1979). PDF Reprint
4. History of the American Society for Photobiology (ASP) [the First 10 Years, and Before], K.C. Smith, Photochem. Photobiol., 35, 597-614 (1982). PDF Reprint
5. Opinion: Up with AIBS! K.C. Smith, BioScience, 33, 11 (1983). PDF Reprint
6. President's Annual Report. K.C. Smith, BioScience, 34, 81-82 (1984). PDF Reprint
7. Book Review: Topics in Photobiology (Proceedings of International Workshop on Photobiology, May 26-29, 1982, Jeju, Korea) H.-O. Kim and P.-S. Song (ed.), The Graduate School and Research Institute for Subtropical Agriculture, Jeju National University, Jeju, Korea (1983), K.C. Smith, Photochem. Photobiol., 40, 563 (1984). PDF Reprint
8. Book Review: Repairable Lesions in Microorganisms, A. Hurst and A. Nasim (ed.) Academic Press, N.Y. (1984). K.C. Smith, Q. Rev. Biol., 61, 102 (1986). PDF Reprint
9. Letter to Editor: Ignorance of Photobiology: a Major Pitfall in Using Lasers in Medicine. K.C. Smith, Pain, 47, 243-245 (1991). PDF Reprint
10. The First Law of Photochemistry and Lasers. K.C. Smith, Laser Therapy, 11,162-163 (1999). PDF Reprint
11. Laser (and LED) Therapy Is Phototherapy. K.C. Smith, Photomedicine and Laser Surgery 23, 78-80 (2005). PDF Reprint
12. Ethics in Science: What Has Happened to It? K.C. Smith, ASBMB Today, p.2, May 2006. PDF Reprint
13. Book Review: Ten Lectures on Basic Science of Laser Phototherapy by Tiina Karu. Review by K.C. Smith, Photochem. Photobiol., 83, 1539-1540 (2007). PDF Reprint
[ TOP ]
D. BOOKS AND REPORTS1. Molecular Photobiology: Inactivation and Recovery. K.C. Smith and P.C. Hanawalt, Academic Press, N.Y. (1969).
[Japanese translation, 1969; Russian translation, 1972]2. Biological Impacts of Increased Intensities of Solar Ultraviolet Radiation. K.C. Smith, P. Bener, M.M. Caldwell, F. Daniels, Jr., A.C. Giese, T.H. Goldsmith, W.H. Klein, J.A.H. Lee and F. Urbach, National Academy of Sciences, National Academy of Engineering, Washington, D.C. (1973). PDF Reprint
3. Aging, Carcinogenesis and Radiation Biology: The Role of Nucleic Acid Addition Reactions. K.C. Smith (editor), Plenum Press, N.Y. (1976). Table of Contents
4. Photochemical and Photobiological Reviews. K.C. Smith (editor). Plenum Press, N.Y.
Volume 1, 1976 Table of Contents
Volume 2, 1977 Table of Contents
Volume 3, 1978 Table of Contents
Volume 4, 1979 Table of Contents
Volume 5, 1980 Table of Contents
Volume 6, 1981 Table of Contents
Volume 7, 1983 Table of Contents
5. The Science of Photobiology. K.C. Smith (editor), Plenum Press, N.Y. (1977).
Table of Contents
Second Edition (1989). Table of Contents6. Photobiology, K.C. Smith (series editor), The Science of Photomedicine (J.D. Regan and J.A. Parrish, ed.), Plenum Press, N.Y. (1982). Table of Contents
7. Topics in Photomedicine. K.C. Smith (editor), Plenum Press, N.Y. (1984).
Table of Contents
8. Photobiological Sciences Online, K.C. Smith (founder, editor, author and webmaster)
(a free online textbook) http://www.photobiosci.info/ 2007-
[ TOP ]
E. MODULES for PHOTOBIOLOGICAL SCIENCES ONLINE1. What is Photobiology?, Kendric C. Smith
2. Basic Photochemistry, Kendric C. Smith
3. Basic Ultraviolet Radiation Photobiology, Kendric C. Smith
4. Recombinational DNA Repair, Kendric C. Smith
5. DNA Double-Strand Breaks, Kendric C. Smith
6. DNA-Protein Crosslinks, Kendric C. Smith and Martin D. Shetlar
7. Report of an NAS/NAE Panel on Biological Impacts of Increased Intensities of Solar
Ultraviolet Radiation, 1973, Kendric C. Smith, Chairman
8. Low-Level Laser or LED Therapy is Phototherapy, Kendric C. Smith
9. Photobiology in Art, Kendric C. Smith
[ TOP ]