

On Arithmetic Fundamental Lemmas and Arithmetic Transfers

In honor of Professor Shouwu Zhang on the occasion of his 60th birthday

Zhiyu Zhang

Stanford University

June 5-8, 2023

Schedule

- 1 Beilinson–Bloch conjecture and Bloch–Kato conjecture
- 2 Gross–Zagier–Zhang formula and AGGP conjectures
- 3 Twisted GGP and Twisted AGGP conjectures: $X \rightarrow X \times^{E_0} X$
- 4 Twisted AFL, AT and mirabolic special divisors

Schedule

- 1 Beilinson–Bloch conjecture and Bloch–Kato conjecture
- 2 Gross–Zagier–Zhang formula and AGGP conjectures
- 3 Twisted GGP and Twisted AGGP conjectures: $X \rightarrow X \times^{E_0} X$
- 4 Twisted AFL, AT and mirabolic special divisors

Gross–Zagier–Zhang formula: origins

- A elliptic curve over \mathbb{Q} with conductor N . Then $N \geq 11$.
Choose a modular uniformization $\varphi : X_0(N) \rightarrow A$ over \mathbb{Q} .
- $F = \mathbb{Q}(\sqrt{-d})$ an imaginary quadratic field with odd discriminant.
- Heegner condition: assume there is an ideal \mathfrak{N} of O_F s.t.
 $O_F/\mathfrak{N} = \mathbb{Z}/N\mathbb{Z}$. This implies $L(A_F, 1) = 0$.

We get a Heegner point

$$P_F := (\mathbb{C}/O_F \rightarrow \mathbb{C}/\mathfrak{N}^{-1}) \in X_0(N)(H_F),$$

$$P_{F,A} := \text{Tr}_{H_F/F} \varphi(P_F) \in A(F).$$

Theorem (Gross—Zagier, 1980s)

$$L'(A_F, 1) \simeq \langle P_{F,A}, P_{F,A} \rangle_{\text{NT}}.$$

Gross–Zagier–Zhang formula: use representation theory

- Uniformization — the automorphic representation π of E appears in the cohomology of $X_0(N)$.
- Heegner point — the embedding $G^\flat = \text{Res}_{F/\mathbb{Q}} \mathbb{G}_m \rightarrow G = \text{GL}_2$ gives an embedding of Shimura varieties $M^\flat \rightarrow M = X_0(N)$ over F .
- Neron–Tate height — arithmetic intersection of 0-cycles on curves.

Reformulation and generalization to Shimura curves over totally real fields:

Gross–Zagier–Zhang formula

Let F/F_0 be any CM quadratic extension of a totally real number field.

Theorem (The Gross–Zagier–Zhang formula, S. Zhang, YZZ)

Let $\pi \in \mathcal{A}(\mathrm{GL}_{2,F_0})$ be a Hilbert modular form of parallel weight 2 appearing in the cohomology of a Shimura curve $M = \mathrm{Sh}_B$ over F_0 . Assume $\mathrm{Hom}_{\mathbb{A}_F^\times}(\pi_B, 1) \neq 0$ (non-zero periods), then $L(\pi_F, \frac{1}{2}) = 0$ and

$$L'(\pi_F, \frac{1}{2}) \simeq \left\langle M_F^\flat, M_F^\flat \right\rangle_{M, \mathrm{NT}, \pi_f}.$$

The local $\mathrm{Hom} \neq 0$ is precisely described (Saito–Tunnell) and $\dim \mathrm{Hom} \leq 1$.

Applications

Applications:

- Let f be any new form of weight 2, then $L'(f, 1) \geq 0$ (non-negativity predicted by RH).
- For $\sigma \in \text{Gal}(\mathbb{Q}^{\text{alg}}/\mathbb{Q})$, $\text{ord}_{s=1} L(f, s) = 1 \iff \text{ord}_{s=1} L(f^\sigma, s) = 1$.
- BSD conjecture for (principal polarized) modular GL_2 -type abelian variety A/F_0 when $r_{\text{an}}(A) \leq 1$.
- Gauss class number problem.
- ...

Similar formulas for modular forms of weight $2k \geq 2$ is also discovered by S. Zhang on modular curves.

Generalizations to Shimura varieties?

Unitary Shimura varieties and GGP cycles

- A hermitian space V over F/F_0 , with sign $(n, 1)_{\varphi_0}, (n+1, 0)_{\varphi \neq \varphi_0}$.
- A decomposition $V = V^\flat \oplus Fe$ with $(e, e) = 1$.

We have an embedding of unitary Shimura varieties over F

$$M^\flat = \mathrm{Sh}_{\mathrm{U}(V^\flat), K^\flat} \rightarrow M = \mathrm{Sh}_{\mathrm{U}(V), K}.$$

They are related to moduli spaces of abelian varieties with compatible polarizations, O_F -actions and level structures.

Unitary Shimura varieties and GGP cycles

- A hermitian space V over F/F_0 , with sign $(n, 1)_{\varphi_0}, (n+1, 0)_{\varphi \neq \varphi_0}$.
- A decomposition $V = V^\flat \oplus Fe$ with $(e, e) = 1$.

We have an embedding of unitary Shimura varieties over F

$$M^\flat = \mathrm{Sh}_{\mathrm{U}(V^\flat), K^\flat} \rightarrow M = \mathrm{Sh}_{\mathrm{U}(V), K}.$$

They are related to moduli spaces of abelian varieties with compatible polarizations, O_F -actions and level structures.

Consider the diagonal cycle

$$\Delta : M^\flat \rightarrow M^\flat \times M.$$

As $\dim M^\flat = n - 1 = (\dim(M^\flat \times M) - 1)/2$, we can take arithmetic self-intersection of Δ inside $M^\flat \times M$ (Beilinson–Bloch height pairing).

The arithmetic Gan–Gross–Prasad (AGGP) conjecture

Conjecture (AGGP conjecture for unitary groups)

For a tempered cuspidal automorphic representation π of $U(V^\flat) \times U(V)$ appearing in the cohomology of $M^\flat \times M$ with $\text{Hom}_{U(V^\flat)(\mathbb{A}_{F_0})}(\pi, 1) \neq 0$ (in particular $L(\pi, \frac{1}{2}) = 0$), we have

$$L'(\pi, \frac{1}{2}) \simeq \left\langle M_0^\flat, M_0^\flat \right\rangle_{M^\flat \times M, \text{BB}, \pi_f}.$$

The arithmetic Gan–Gross–Prasad (AGGP) conjecture

Conjecture (AGGP conjecture for unitary groups)

For a tempered cuspidal automorphic representation π of $U(V^\flat) \times U(V)$ appearing in the cohomology of $M^\flat \times M$ with $\text{Hom}_{U(V^\flat)(\mathbb{A}_{F_0})}(\pi, 1) \neq 0$ (in particular $L(\pi, \frac{1}{2}) = 0$), we have

$$L'(\pi, \frac{1}{2}) \simeq \left\langle M_0^\flat, M_0^\flat \right\rangle_{M^\flat \times M, \text{BB}, \pi_f}.$$

- It's better to use the language of incoherent Shimura varieties for nearby $\mathbb{V} > 0$ (Milne-Shih, Gross, Talyor-Sempliner).
- $(-)_0$ is a Hecke type modification to cohomological trivial cycles.
- The condition local $\text{Hom} \neq 0$ is precisely described by local GGP conjectures and $\dim \text{Hom} \leq 1$.

Application: Beilinson–Bloch–Kato conjecture of hermitian

Rankin–Selberg motives of $GL_n \times GL_{n+1}$ when $r_{\text{an}} \leq 1$ ([LTXZZ, DZ]).

The arithmetic fundamental lemma (AFL)

Under the relative trace formula (RTF) approach of W. Zhang, **the AGGP conjecture is reduced to its analogs over local fields $(\mathbb{Q}_p, \mathbb{R})$** :

- AFL and AT on *Rapoport–Zink spaces \mathcal{N}* (formal schemes over \mathbb{Z}_p).

Theorem (AFL, W. Zhang ($p \geq n + 1$), Z. (any p))

For regular semi-simple elements $\gamma \in S_{n+1} \leftrightarrow g \in \mathrm{U}(\mathbb{V}_{n+1})$,

$$\partial \mathrm{Orb}(\gamma, 1_{S_{n+1}(\mathbb{Z}_p)}) = -\mathrm{Int}(\mathcal{N}_n, (1 \times g)\mathcal{N}_n)_{\mathcal{N}_n \times \mathcal{N}_{n+1}} \log p.$$

The arithmetic fundamental lemma (AFL)

Under the relative trace formula (RTF) approach of W. Zhang, **the AGGP conjecture is reduced to its analogs over local fields $(\mathbb{Q}_p, \mathbb{R})$** :

- AFL and AT on *Rapoport-Zink spaces* \mathcal{N} (formal schemes over \mathbb{Z}_p).

Theorem (AFL, W. Zhang ($p \geq n+1$), Z. (any p))

For regular semi-simple elements $\gamma \in S_{n+1} \leftrightarrow g \in \mathrm{U}(\mathbb{V}_{n+1})$,

$$\partial \mathrm{Orb}(\gamma, 1_{S_{n+1}(\mathbb{Z}_p)}) = -\mathrm{Int}(\mathcal{N}_n, (1 \times g)\mathcal{N}_n)_{\mathcal{N}_n \times \mathcal{N}_{n+1}} \log p.$$

- The nearby unitary group $\mathrm{U}(\mathbb{V}_n)$ acts on \mathcal{N}_n .
- $\Delta_p : \mathcal{N}_n \rightarrow \mathcal{N}_n \times \mathcal{N}_{n+1}$ is the local analog of $M^\flat \rightarrow M^\flat \times M$ over good primes.
- For orbital integrals, we consider the action of $\mathrm{GL}_n(\mathbb{Q}_p)$ on the symmetric space $S_{n+1} = \mathrm{GL}_{n+1}(\mathbb{Q}_{p^2})/\mathrm{GL}_{n+1}(\mathbb{Q}_p)$.
- We have AFLs over any p -adic field $F_v/F_{0,v}$ (Mihatsch-Zhang, Z.).

Arithmetic transfers (AT)

For applications in practice, it is natural and necessary to consider ramification and formulate similar **AT identities**.

- Let V be any $\mathbb{Q}_{p^2}/\mathbb{Q}_p$ hermitian space of dimension $n + 1$.
- Let L be a hermitian lattice in V such that $p(L^\vee/L) = 0$.
- A decomposition $L = L^\flat \oplus \mathbb{Z}_{p^2}e$.

We have the local diagonal cycle $\Delta_{L^\flat \rightarrow L} : \mathcal{N}_{L^\flat} \rightarrow \mathcal{N}_{L^\flat} \times \mathcal{N}_L$.

Arithmetic transfers (AT)

For applications in practice, it is natural and necessary to consider ramification and formulate similar **AT identities**.

- Let V be any $\mathbb{Q}_{p^2}/\mathbb{Q}_p$ hermitian space of dimension $n + 1$.
- Let L be a hermitian lattice in V such that $p(L^\vee/L) = 0$.
- A decomposition $L = L^\flat \oplus \mathbb{Z}_{p^2}e$.

We have the local diagonal cycle $\Delta_{L^\flat \rightarrow L} : \mathcal{N}_{L^\flat} \rightarrow \mathcal{N}_{L^\flat} \times \mathcal{N}_L$.

Theorem (AT($L^\flat \rightarrow L$), \mathbb{Z} .)

$$\partial \text{Orb}(\gamma, 1_{S(L, L^\vee)}) = -\widetilde{\text{Int}}(\mathcal{N}_{L^\flat}, (1 \times g)\mathcal{N}_{L^\flat})_{\mathcal{N}_{L^\flat} \times \mathcal{N}_L} \log p.$$

New: $\mathcal{N}_{L^\flat} \times \mathcal{N}_L$ is singular. To define $\widetilde{\text{Int}}$, we use a small resolution and do derived intersection of strict transforms of cycles in K-groups.

Main goals today

- I will recall the twisted GGP conjectures and formulate an arithmetic analog for the twisted diagonal cycle (for real quadratic algebra E_0/F_0)

$$\Delta^{E_0} : X \rightarrow X \times^{E_0} X.$$

If $E_0 = F_0 \times F_0$ is split, it recovers Y. Liu's RTF approach to Fourier–Jacobi AGGP conjectures.

- I will formulate the twisted AFL (+ some ATs) in a uniform way.

Main goals today

- I will recall the twisted GGP conjectures and formulate an arithmetic analog for the twisted diagonal cycle (for real quadratic algebra E_0/F_0)

$$\Delta^{E_0} : X \rightarrow X \times^{E_0} X.$$

If $E_0 = F_0 \times F_0$ is split, it recovers Y. Liu's RTF approach to Fourier–Jacobi AGGP conjectures.

- I will formulate the twisted AFL (+ some ATs) in a uniform way.
- The new geometric side is very rich. I will introduce new **mirabolic special divisors** (“quantization” of RZ spaces for non-reductive groups). Via pullbacks, they recover the notion of Kulda–Rapoport cycles. I will introduce Galois involutions of RZ spaces.
- I will prove the twisted AFL by globalization. FL and some transfers could be formulated and proved similarly.

Schedule

- 1 Beilinson–Bloch conjecture and Bloch–Kato conjecture
- 2 Gross–Zagier–Zhang formula and AGGP conjectures
- 3 Twisted GGP and Twisted AGGP conjectures: $X \rightarrow X \times^{E_0} X$
- 4 Twisted AFL, AT and mirabolic special divisors

Twisted GGP conjecture: GL case

- Let $E/F, K/F$ be two quadratic extensions of number fields.
- Let μ be a Hecke character of \mathbb{A}_E^\times s.t. $\mu|_{\mathbb{A}_F^\times} = \eta_{E/F}$.
- Let V be a hermitian space over E/F , and $\omega_V = \omega_{V,\psi,\mu}$ be the Weil representation of $\mathrm{U}(V)(\mathbb{A}_F)$.

Assume $E = K$. Let Π be a cuspidal automorphic representation of $\mathrm{GL}(V)(\mathbb{A}_F)$. We consider the period integral

$$\mathcal{P}_V(f, \phi) = \int_{\mathrm{U}(V)} f(g) \bar{\phi}(g) dg, \quad f \in \Pi, \phi \in \omega_V.$$

Assume $\mathrm{Hom}_{\mathrm{U}(V_v)}(\Pi_v, \omega_{V_v}) \neq 0$ for all places v of F , which is precisely described by local twisted GGP conjectures.

Twisted GGP conjecture: GL case

- Let $E/F, K/F$ be two quadratic extensions of number fields.
- Let μ be a Hecke character of \mathbb{A}_E^\times s.t. $\mu|_{\mathbb{A}_F^\times} = \eta_{E/F}$.
- Let V be a hermitian space over E/F , and $\omega_V = \omega_{V,\psi,\mu}$ be the Weil representation of $\mathrm{U}(V)(\mathbb{A}_F)$.

Assume $E = K$. Let Π be a cuspidal automorphic representation of $\mathrm{GL}(V)(\mathbb{A}_F)$. We consider the period integral

$$\mathcal{P}_V(f, \phi) = \int_{\mathrm{U}(V)} f(g) \bar{\phi}(g) dg, \quad f \in \Pi, \phi \in \omega_V.$$

Assume $\mathrm{Hom}_{\mathrm{U}(V_v)}(\Pi_v, \omega_{V_v}) \neq 0$ for all places v of F , which is precisely described by local twisted GGP conjectures.

Conjecture (Twisted GGP conjecture)

The following things are equivalent.

- ① $P_V \neq 0$.
- ② The central Rankin–Selberg L -value $L(\tfrac{1}{2}, \Pi \times {}^\sigma \Pi^\vee \times \mu^{-1}) \neq 0$.

RTF approach to twisted GGP conjecture

Theorem (D. Wang)

Assume V is split, E/F is unramified and splits at infinity, Π_v is unramified over non-split places of E/F and is supercuspidal for at least two split places of E/F . Then the twisted GGP conjecture is true.

The (refined) general case (allowing general K/F , ramifications) is a joint work in progress (Lu-Wang-Z.). We have a RTF approach.

RTF approach to twisted GGP conjecture

Theorem (D. Wang)

Assume V is split, E/F is unramified and splits at infinity, Π_v is unramified over non-split places of E/F and is supercuspidal for at least two split places of E/F . Then the twisted GGP conjecture is true.

The (refined) general case (allowing general K/F , ramifications) is a joint work in progress (Lu-Wang-Z.). We have a RTF approach.

$$G' = \text{Res GL}_{n, E \otimes_F K}, H_1 = \text{Res GL}_{n, E}, H_2 = \text{Res GL}_{n, K}.$$

For $f' \in \mathcal{S}(G'(\mathbb{A}_F)), \phi' \in \mathcal{S}(\mathbb{A}_{E^n})$, we study the global distribution

$$\mathcal{J}(f', \phi', s) := \int_{[H_1]} \int_{[H_2]} K_{f'}(h_1, h_2) \overline{\Theta_\mu(h_1, \phi')} dh_1 dh_2, s \in \mathbb{C}.$$

$$K_{f'}(x, y) = \sum_{\gamma \in G(F)} f'(x^{-1} \gamma y), \Theta_\mu(h_1, \phi') = \sum_{v \in E^n} \mu(h_1) |h_1|^s \phi'(vh_1).$$

How do you twist the diagonal cycle?

Given a smooth proper variety X over a field F . We have the diagonal cycle

$$\Delta : X \rightarrow X \times X.$$

We know $\chi(X) = \langle \Delta, \Delta \rangle_{X \times X}$. Let E/F be a (quadratic) extension. We expect a twisted diagonal cycle (at least over E):

$$\Delta^E : X \rightarrow X \times^E X?$$

Idea: take Weil restriction. If $E = F \times F$, we obtain the diagonal cycle. For Shimura varieties, we consider the twisted diagonal cycle

$$\mathrm{Sh}_G \rightarrow \mathrm{Sh}_{\mathrm{Res}_{E/F} G}$$

Its cohomology class is related to the plectic conjecture.

Twisted AGGP conjecture: cycles

- Let F_0/\mathbb{Q} be totally real. Let F/F_0 (resp. E_0/F_0) be a CM quadratic (resp. real quadratic) extension.
- Choose $\mu : \mathbb{A}_F^\times \rightarrow \mathbb{C}$ lifting η_{F/F_0} of weight one ($\mu_\infty(z) = \sqrt{z\bar{z}}/z$).
- A hermitian space V over F/F_0 , with sign $(n-1, 1)_{\varphi_0}, (n, 0)_{\varphi \neq \varphi_0}$.

We introduce **the twisted diagonal cycle** over the CM field $E = FE_0$:

$$\Delta_K : X = \mathrm{Sh}_{\mathrm{U}(V), K} \rightarrow X \times^{E_0} X := \mathrm{Sh}_{\mathrm{U}(V_{E_0}), K_{E_0}}.$$

$$\dim(X) = n - 1 = \dim(X \times^{E_0} X)/2.$$

Twisted AGGP conjecture: special divisors and distributions

For $\phi \in \mathcal{S}(\mathrm{U}(V)(\mathbb{A}_f))^K$, we have Kudla's generating series of special divisors associated to ϕ :

$$Z_\phi \rightarrow \mathrm{Sh}_{\mathrm{U}(V), K}.$$

For $F \in \mathcal{H}_{K_{E_0}} = \mathcal{S}(K_{E_0} \backslash \mathrm{U}(V)(\mathbb{A}_{E_0, f}) / K_{E_0})$, we consider the Hecke translation of the twisted diagonal cycle $R(F) * X$.

We are interested in the arithmetic functional

$$\mathcal{I}(F, \phi) := \langle (R(F) * X)_0, (Z_\phi)_0 \rangle_{X \times^{E_0} X, \mathrm{BB}}.$$

$(-)_0$ are certain odd Hecke type projectors.

Twisted AGGP conjecture

Let Π be a tempered cuspidal automorphic representation of $U(V)(\mathbb{A}_{E_0})$ appearing in the cohomology of $X \times^{E_0} X$.

Consider the twisted Asai automorphic L-function

$$L(\Pi, s) := L(s, \Pi, As^+ \otimes \mu^{-1}).$$

$$(\text{Ind}_{WD_E}^{WD_F}(M \otimes (\sigma_{E/F} M))) = As^+ \oplus As^-.$$

Assume $\text{Hom}_{U(V)(\mathbb{A}_{F_0})}(\pi, \omega_{\mathbb{V}}) \neq 0$. By local twisted GGP conjectures, we expect $L(\Pi, \frac{1}{2}) = 0$.

Twisted AGGP conjecture

Let Π be a tempered cuspidal automorphic representation of $U(V)(\mathbb{A}_{E_0})$ appearing in the cohomology of $X \times^{E_0} X$.

Consider the twisted Asai automorphic L-function

$$L(\Pi, s) := L(s, \Pi, As^+ \otimes \mu^{-1}).$$

$$(\text{Ind}_{WD_E}^{WD_F}(M \otimes (\sigma_{E/F} M))) = As^+ \oplus As^-.$$

Assume $\text{Hom}_{U(V)(\mathbb{A}_{F_0})}(\pi, \omega_{\mathbb{V}}) \neq 0$. By local twisted GGP conjectures, we expect $L(\Pi, \frac{1}{2}) = 0$.

Conjecture (Twisted AGGP)

$\mathcal{I}(F, \phi) \neq 0$ for some $(F, \phi) \in \Pi_f^{K_{E_0}} \times \mathcal{S}(U(V)(\mathbb{A}_f)^K)$ if and only if $L'(\Pi, \frac{1}{2}) \neq 0$.

A refined version is work in progress. If $K = F_0 \times F_0$, then we recover Y. Liu's refined Fourier–Jacobi AGGP conjectures.

Twisted Fourier–Jacobi cycles and a RTF approach

As in [Liu], consider the Albanese A_X of X . The character μ gives an abelian variety A_μ with CM by a number field M_μ .

For $F \in \mathcal{H}_{K_{E_0}}$ and $\phi : A_X \rightarrow A_\mu$, we introduce **the twisted Fourier–Jacobi cycle**

$$\mathrm{FJ}^K(F, \phi) := R(F) * X \times \phi(A_X) \rightarrow X \times^{E_0} X \times A_\mu.$$

These cycles are expected to bound Selmer groups for the automorphic motive associated to $As_{E/F}(\Pi) \otimes \mu^{-1}$.

We may reformulate the arithmetic intersection problem using twisted Fourier–Jacobi cycles.

By a RTF approach, we may reduce the twisted AGGP conjecture to local twisted AFL and ATs.

Schedule

- 1 Beilinson–Bloch conjecture and Bloch–Kato conjecture
- 2 Gross–Zagier–Zhang formula and AGGP conjectures
- 3 Twisted GGP and Twisted AGGP conjectures: $X \rightarrow X \times^{E_0} X$
- 4 Twisted AFL, AT and mirabolic special divisors

Quadratic extensions

Let p be an odd prime. Let F/F_0 be an unramified quadratic extension of p -adic local fields. Let K/F_0 be a quadratic extension of F_0 .

- By Galois theory, there is a third quadratic extension F'/F_0 inside $F \otimes_{F_0} K$ fixed by $\sigma_{F/F_0} \otimes \sigma_{K/F_0}$.
- (Split case) If $K = F_0 \times F_0$, then $F' \cong F$ is the conjugated diagonal F inside $F \otimes_{F_0} K \cong F \times F$.
- (GL case) If $K = F$, then $F' \cong F_0 \times F_0$.

The analytic side: spaces and orbits

Consider **the symmetric space**

$$S_{n,F'} = \{\gamma \in \mathrm{GL}_n(F') \mid \gamma\sigma_{F'/F_0}(\gamma) = id\}.$$

- (Split case $K = F_0 \times F_0$) $S_{n,F'} = S_n$.
- (GL case $K = F$) $S_{n,F'} \cong \mathrm{GL}_n(F_0)$.

Let $V'_0 = F_0^n \times (F_0^n)^*$. We consider the natural action of $h \in \mathrm{GL}_n(F_0)$ on

$$(\gamma, u') \in S_{n,F'} \times V'_0.$$

The analytic side: orbital integrals

Consider $f' \in \mathcal{S}(S_{n,F'})$, $\phi' \in \mathcal{S}(V'_0)$. Consider a regular semi-simple orbit $(\gamma, u') \in S_{n,F'} \times V'_0$.

Definition (Derived orbital integral)

For $s \in \mathbb{C}$, define $\text{Orb}(\gamma, u', f' \otimes \phi', s)$ as

$$\int_{h \in \text{GL}_n(F_0)} f'(h^{-1}\gamma h) \phi'(h^{-1} \cdot u') (-1)^{\text{val}(\det h)} |\det h|^s dh.$$

Let $F'_{\text{std}} := 1_{S_{n,F'}(O_{F_0})} \times 1_{O_{V'_0}}$. The fundamental derived orbital integral is

$$\partial \text{Orb}((\gamma, u'), F'_{\text{std}}) = \omega(\gamma, u') \frac{d}{ds} \big|_{s=0} \text{Orb}((\gamma, u'), F'_{\text{std}}, s).$$

The analytic side: orbital integrals

Consider $f' \in \mathcal{S}(S_{n,F'})$, $\phi' \in \mathcal{S}(V'_0)$. Consider a regular semi-simple orbit $(\gamma, u') \in S_{n,F'} \times V'_0$.

Definition (Derived orbital integral)

For $s \in \mathbb{C}$, define $\text{Orb}(\gamma, u', f' \otimes \phi', s)$ as

$$\int_{h \in \text{GL}_n(F_0)} f'(h^{-1}\gamma h) \phi'(h^{-1} \cdot u') (-1)^{\text{val}(\det h)} |\det h|^s dh.$$

Let $F'_{\text{std}} := 1_{S_{n,F'}(O_{F_0})} \times 1_{O_{V'_0}}$. The fundamental derived orbital integral is

$$\partial \text{Orb}((\gamma, u'), F'_{\text{std}}) = \omega(\gamma, u') \frac{d}{ds} \big|_{s=0} \text{Orb}((\gamma, u'), F'_{\text{std}}, s).$$

Here we normalize the Haar measure such that $\text{GL}_n(O_{F_0})$ has volume 1. And $\omega(\gamma, u') \in \{\pm 1\}$ is a transfer factor.

Unitary side: $\mathrm{U}(V) \rightarrow \mathrm{U}(V_K)$

Let V be the split hermitian space over F/F_0 of dimension n . Set $V_K := V \otimes_{F_0} K$. Consider the hermitian symmetric space

$$\mathrm{U}(V_K)^- := \{g \in \mathrm{U}(V_K) \mid g\sigma_{KF/F}(g) = \mathrm{id.}\}$$

We consider the natural action of $h \in \mathrm{U}(V)$ on

$$(g, u) \in \mathrm{U}(V_K)^- \times V.$$

- (Split case $K = F_0 \times F_0$) $\mathrm{U}(V_K) = \mathrm{U}(V) \times \mathrm{U}(V)$, $\mathrm{U}(V_K)^- \cong \mathrm{U}(V)$.
- (GL case $K = F$) $\mathrm{U}(V_K) = \mathrm{GL}(V)$, $\mathrm{U}(V_K)^- = \mathrm{Herm}^{split}(V)$.

Fundamental Lemmas

There exists a matching of semi-simple orbits

$$\mathrm{GL}_n(F_0) \backslash [S_{n,F'} \times V'_0] \leftrightarrow (\mathrm{U}(V) \backslash [\mathrm{U}(V_K)^- \times V]) \coprod (\mathrm{U}(\mathbb{V}) \backslash [\mathrm{U}(\mathbb{V}_K)^- \times \mathbb{V}]).$$

Choose a self-dual lattice L in V . Set $F_{\mathrm{std}} = 1_{\mathrm{U}(L \otimes O_K)^-} \times 1_L$. In the RTF approach, we reduce related matchings of orbital integrals at good places (by D. Wang when $E = K$) to following fundamental lemmas.

Fundamental Lemmas

There exists a matching of semi-simple orbits

$$\mathrm{GL}_n(F_0) \backslash [S_{n,F'} \times V'_0] \leftrightarrow (\mathrm{U}(V) \backslash [\mathrm{U}(V_K)^- \times V]) \coprod (\mathrm{U}(\mathbb{V}) \backslash [\mathrm{U}(\mathbb{V}_K)^- \times \mathbb{V}]).$$

Choose a self-dual lattice L in V . Set $F_{\mathrm{std}} = 1_{\mathrm{U}(L \otimes O_K)^-} \times 1_L$. In the RTF approach, we reduce related matchings of orbital integrals at good places (by D. Wang when $E = K$) to following fundamental lemmas.

Theorem (FL)

For any regular semisimple $(g, u) \in \mathrm{U}(V_K)^- \times V$ matching (γ, u') , we have

$$\mathrm{Orb}((\gamma, u'), F'_{\mathrm{std}}) = \mathrm{Orb}((g, u), F_{\mathrm{std}}).$$

If regular semi-simple (γ, u') matches $(g, u) \in \mathrm{U}(\mathbb{V}_K)^- \times \mathbb{V}$, then $\mathrm{Orb}((\gamma, u'), F'_{\mathrm{std}}) = 0$. How about $\partial \mathrm{Orb}((\gamma, u'), F'_{\mathrm{std}})$?

Objects: Basic triples

For any \mathcal{O}_{F_0} -scheme S where p is locally nilpotent, consider triples (X, ι, λ) over S where

- X is a formal p -divisible \mathcal{O}_{F_0} -module of height $2n$ and dimension n over S .
- $\iota : \mathcal{O}_F \rightarrow \text{End}(X)$ is an action satisfying *Kottwitz condition* of signature $(n-1, 1)$ on $\text{Lie}X$.
- $\lambda : X \cong X^\vee$ is a \mathcal{O}_F -linear principal polarization.

There is a basic triple (unique up to quasi-isogeny) over $\mathbb{F}_p^{\text{alg}}$ (e.g. from supersingular elliptic curves). Choose one and call it the framing triple $(\mathbb{X}, \iota_{\mathbb{X}}, \lambda_{\mathbb{X}})$.

The **unitary Rapoport-Zink space**

$$\mathcal{N}_n \rightarrow \mathrm{Spf} \mathcal{O}_{\breve{F}_0}$$

is the moduli space classifying basic triples $(X, \iota, \lambda, \rho)$ with a quasi-isogeny $\rho : X \rightarrow \mathbb{X}$ over the reduction $S \otimes \mathbb{F}_p^{\mathrm{alg}}$.

The **unitary Rapoport-Zink space**

$$\mathcal{N}_n \rightarrow \mathrm{Spf} \mathcal{O}_{\breve{F}_0}$$

is the moduli space classifying basic triples $(X, \iota, \lambda, \rho)$ with a quasi-isogeny $\rho : X \rightarrow \mathbb{X}$ over the reduction $S \otimes \mathbb{F}_p^{\mathrm{alg}}$.

Consider the basic triple \mathbb{E} of signature $(1, 0)$, which has a canonical lifting \mathcal{E} . We have $\mathbb{V} = \mathrm{Hom}_{\mathcal{O}_F}^\circ(\mathbb{E}, \mathbb{X})$.

The unitary group $g \in \mathrm{U}(\mathbb{V})(F_0) \cong \mathrm{Aut}^\circ(\mathbb{X}, \iota_{\mathbb{X}}, \lambda_{\mathbb{X}})$ acts on \mathcal{N}_n by changing the framing ρ .

Unitary RZ space and divisors

The **unitary Rapoport-Zink space**

$$\mathcal{N}_n \rightarrow \mathrm{Spf} \mathcal{O}_{\breve{F}_0}$$

is the moduli space classifying basic triples $(X, \iota, \lambda, \rho)$ with a quasi-isogeny $\rho : X \rightarrow \mathbb{X}$ over the reduction $S \otimes \mathbb{F}_p^{\mathrm{alg}}$.

Consider the basic triple \mathbb{E} of signature $(1, 0)$, which has a canonical lifting \mathcal{E} . We have $\mathbb{V} = \mathrm{Hom}_{\mathcal{O}_F}^{\circ}(\mathbb{E}, \mathbb{X})$.

The unitary group $g \in \mathrm{U}(\mathbb{V})(F_0) \cong \mathrm{Aut}^{\circ}(\mathbb{X}, \iota_{\mathbb{X}}, \lambda_{\mathbb{X}})$ acts on \mathcal{N}_n by changing the framing ρ .

For $u \in \mathbb{V} - 0$, we have the **Kudla–Rapoport divisor**

$$\mathcal{Z}(u) \rightarrow \mathcal{N}_n$$

as the lifting locus of $u : \mathbb{E} \rightarrow \mathbb{X}$ to $\mathcal{E} \rightarrow X$.

Special divisors and twisted AFL

Similar to global situation, we have the twisted Rapoport–Zink space with $U(\mathbb{V}_K)$ -action

$$\mathcal{N}_{n,K} \rightarrow \mathrm{Spf} \, O_{\breve{K}}$$

parameterizing formal O_K -modules with O_{KF} -actions, O_{KF}/O_K -linear polarization and $(-)\otimes O_K$ -signature $(1, n-1)$.

\mathcal{N}_n (resp. $\mathcal{N}_{n,K}$) is formally smooth over $\mathrm{Spf} \, O_{\breve{K}}$ of dimension $n-1$ (resp. $2n-2$) with natural action of $U(\mathbb{V})$ (resp. $U(\mathbb{V}_K)$). Consider the twisted diagonal cycle

$$\Delta^K = \mathcal{N}_n \rightarrow \mathcal{N}_{n,K}.$$

Special divisors and twisted AFL

Similar to global situation, we have the twisted Rapoport–Zink space with $U(\mathbb{V}_K)$ -action

$$\mathcal{N}_{n,K} \rightarrow \mathrm{Spf} \mathcal{O}_{\breve{K}}$$

parameterizing formal \mathcal{O}_K -modules with \mathcal{O}_{KF} -actions, $\mathcal{O}_{KF}/\mathcal{O}_K$ -linear polarization and $(-)\otimes \mathcal{O}_K$ -signature $(1, n-1)$.

\mathcal{N}_n (resp. $\mathcal{N}_{n,K}$) is formally smooth over $\mathrm{Spf} \mathcal{O}_{\breve{K}}$ of dimension $n-1$ (resp. $2n-2$) with natural action of $U(\mathbb{V})$ (resp. $U(\mathbb{V}_K)$). Consider the twisted diagonal cycle

$$\Delta^K = \mathcal{N}_n \rightarrow \mathcal{N}_{n,K}.$$

Theorem (Twisted AFL, Z.)

Assume K/F_0 is unramified. For any regular semisimple $(g, u) \in U(\mathbb{V})^- \times \mathbb{V}$, matching (γ, u') , we have

$$\partial \mathrm{Orb}((\gamma, u'), F'_{\mathrm{std}}) = -\mathrm{Int}(g\mathcal{N}_n, \mathcal{Z}(u))_{\mathcal{N}_{n,K}} \log q.$$

The embedding when $K = F$

- We may use the twisted AFL (+ AT) to establish the twisted AGGP conjectures when the global quadratic extensions are unramified.
- If $K = F_0 \times F_0$, then $\mathcal{N}_{n,K} = \mathcal{N}_n \times \mathcal{N}_n$ and the twisted AFL recovers the AFL related to original AGGP conjectures.
- We also formulate the twisted AFL when K/F_0 is ramified, which is a work in progress.

We now discuss new constructions on Rapoport–Zink spaces in the case $K = F$, which in particular leads to the proof of twisted AFL.

From now on $K = F$. Then $\mathcal{M}_n := \mathcal{N}_{n,F}$ is the moduli of basic triples (X, ι, ρ) (forget the data of polarization). The twisted diagonal cycle is the forgetful map

$$\mathcal{N}_n \rightarrow \mathcal{M}_n.$$

Involution on RZ spaces

Consider the polarization $\lambda_{\mathbb{X}} : \mathbb{X} \rightarrow \mathbb{X}^\vee$. We introduce an involution

$$\sigma : \mathcal{M}_n \rightarrow \mathcal{M}_n$$

$$(X, \iota, \rho) \rightarrow (X^\vee, \sigma_{F/F_0} \circ \iota^\vee, \lambda_{\mathbb{X}}^{-1} \circ (\rho^\vee)^{-1} : X^\vee \rightarrow \mathbb{X})$$

Proposition

The action of $U(\mathbb{V}_K)$ on \mathcal{M}_n is σ -equivariant. And \mathcal{N}_n is the derived fixed locus of σ

$$\mathcal{M}_n^{\sigma=1} = \mathcal{N}_n.$$

We have similar constructions for Weil restrictions of general RZ spaces.

New special divisors on RZ spaces

We introduce new special divisors on \mathcal{M}_n which doesn't exist globally. They are related to RZ spaces of (non-reductive) mirabolic subgroups of GL_n .

$$\mathbb{V} = \mathrm{Hom}_{O_F}^{\circ}(\mathbb{E}, \mathbb{X}), \mathbb{V}^* = \mathrm{Hom}_{O_F}^{\circ}(\mathbb{X}, \mathbb{E}).$$

Definition (Mirabolic special divisors)

- For non-zero $u \in \mathbb{V}$, $\mathcal{Z}(u)$ is the lifting locus of $u : \mathbb{E} \rightarrow \mathbb{X}$.
- For non-zero $u^* \in \mathbb{V}^*$, $\mathcal{Z}^*(u^*)$ is the lifting locus of $u^* : \mathbb{X} \rightarrow \mathbb{E}$.

Basic geometry of mirabolic special divisors

Proposition (Z.)

- $\mathcal{Z}(u)$ and $\mathcal{Z}^*(u^*)$ are Cartier divisors on \mathcal{M}_n .
- (The pullback formula) $\mathcal{Z}(u)|_{\mathcal{N}_n} = \mathcal{Z}(u)$.
- We have the duality

$$\sigma(\mathcal{Z}^*(u^*)) = \mathcal{Z}(u), \lambda_{\mathbb{X}}^{-1} \circ (u^*)^\vee \circ \lambda_{\mathbb{E}} = u.$$

- If $(u, u^*) = 1$, then $\mathcal{Z}(u) \cap \mathcal{Z}(u^*) \cong \mathcal{M}_{n-1}$.

Basic geometry of mirabolic special divisors

Proposition (Z.)

- $\mathcal{Z}(u)$ and $\mathcal{Z}^*(u^*)$ are Cartier divisors on \mathcal{M}_n .
- (The pullback formula) $\mathcal{Z}(u)|_{\mathcal{N}_n} = \mathcal{Z}(u)$.
- We have the duality

$$\sigma(\mathcal{Z}^*(u^*)) = \mathcal{Z}(u), \lambda_{\mathbb{X}}^{-1} \circ (u^*)^\vee \circ \lambda_{\mathbb{E}} = u.$$

- If $(u, u^*) = 1$, then $\mathcal{Z}(u) \cap \mathcal{Z}(u^*) \cong \mathcal{M}_{n-1}$.
- Using these new divisors, we show a key reduction of the twisted AFL.
- We expect a twisted local arithmetic theta correspondence using these cycles. We could use them to reformulate (more) KR conjectures.
- Motivated by relative Langlands, we hope to develop a general theory of parabolic version RZ spaces. See also the mirabolic Satake equivalence.

Proof: a global method via modularity

- We globalize the local quadratic extensions to global quadratic extensions $F/F_0, E_0/F_0$.
- We globalize the difference of geometric side and the analytic side to a Hilbert automorphic form Dif . On analytic side, we consider

$$\mathbb{J}_\alpha(\Phi', s) := \int_{\mathrm{GL}_n(\mathbb{A}_F)} \sum_{(\gamma, u') \in S_{n, F'}(\alpha) \times V'_0} \Phi'(g^{-1} \cdot (\gamma, u')) |g|_{F_0}^s \eta(g) dg.$$

Using modularity and vanishing of primitive Fourier coefficients, we show $Dif = 0$.

By explicit computations, we verify the twisted AFL if $n \leq 2$ or (g, u) is simple.

By the twisted FL and non-vanishing of local orbital integrals away from the distinguished local places, we obtain the desired twisted AFL from $Dif = 0$.

Happy birthday, Shouwu!