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Schedule

1 Motivation: global proofs of local conjectures

2 Formulation of orbital integrals and local fundamental lemmas

3 Global proof of local fundamental lemmas

4 Future works from relative Langlands program
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Principles for fundamental lemmas and so on

1 Study local objects by local geometry and counting: locally constancy,
limits, parabolic descents, stratification and inductive structures.

2 It is very hard to locally prove some refined local conjectures of local
objects, e.g. orbital integrals, local Whittaker functions.

3 With global rigidity and purity, we could “easily” prove local
conjectures, without refined study of local objects, e.g. local rigidity
and purity (hard to prove!). Only need to know in simple cases,
conjectures are true by computations, or by induction.

4 Local conjectures are formulated with global motivations, and based
on local computations in simple cases. Often global proofs appear
first, then several years later we understand refined local
geometry / analysis and probably find local proofs. Examples:
fundamental lemmas (Ngo), variants with ramifications (smooth
transfers), local Langlands correspondences for classical groups
(Arthur), local Jacquet-Langlands transfer for GLn, stable base
change (Clozel-Labesse).
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What Langlands said in 1992

Remarks on Igusa Theory and Real Orbital Integrals, Robert P.
Langlands, the zeta functions of Picard modular surfaces, Les Publications
CRM Montreal (1992).

”The study of orbital integrals on p-adic groups has turned out
to be singularly difficult, and even the most basic results in the
simplest examples are surprisingly hard to come by ([H]).”

”For real groups there is a much more incisive technique that is
based on the differential equations exploited by Harish-Chandra
to study the behaviour of orbital integrals near singular elements
([HC I]), and that Shelstad used to obtain the first serious results
on transfer and endoscopy.”
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Global applications of local conjectures

Often such local conjectures are last missing pieces to prove global
conjectures with non-trivial arithmetic applications.

1 The proof of global Gan-Gross-Prasad conjecture on L-functions and
period integrals for Un ×Un+1 (2009-2020s, related to fundamental
lemmas today). It applies to prove rank 0 Bloch-Kato conjectures for
GLn ×GLn+1 motives via bipartite Euler systems ([LTXZZ], 2019).

2 The proof of Gross-Zagier formula on modular curves (1986) and
arithmetic Gan-Gross-Prasad conjecture for Un ×Un+1 (related to
arithmetic fundamental lemmas and my PHD thesis). It applies to
prove one direction of rank 1 Bloch-Kato conjectures for
GLn ×GLn+1 motives (Disegni-Zhang 2024) e.g. BSD conjecture
(n = 1), and also to Gauss class number problem (Goldfeld, 1976).

3 (E. Frenkel, Gauge theory and Langlands duality) From A-branes
(Hitchin fibration) to Hecke eigensheaves has an analogue as a
passage from orbital integrals to Hecke eigenfunctions.
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Global rigidity

1 Global rigidity over number fields: construct related modular forms on
SL2. Used in W. Zhang’s proof of arithmetic fundamental lemma, no
use of refined local structures (e.g. local modularity / Bruhat-Tits).

2 Toy model: the space of modular forms with given level K and weight
k is finite dimensional.

3 For a summary of such a global method and applications, see my
recent arxiv paper “Non-reductive special cycles and Twisted
Arithmetic Fundamental Lemma” and an almost modularity method
to handle ramification in my PHD thesis.

4 Global rigidity over function fields: construct related perverse sheaves
on the relative Hitchin base.

5 Toy model: given a finite map f : X → Y , f∗Qℓ is often determined
on the locus of Y where f is fintie étale.

6 (Today) use global rigidity to study relative orbital integrals for
Hecke functions (joint work with Griffin Wang).
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General orbital integrals

G acts on X over a local arithmetic field F (e.g. Qp or Fp((t))).

Orb(G.x, f) :=

∫
y∈G.x

f(y)dy, ∀f ∈ S(X), x ∈ X.

Classical: consider the G-conjugacy action on X = G.
Relative: H1 → G← H2. H1 ×H2-action on G, or H1-action on G/H2.

Example (Tate thesis)

Gm acts on A1. fp = 1Zp , x = 1 ∈ A1.

ζp(s) =

∫
Gm

fp(t.1)|t|sdt = (1− p−s)−1.

ζ∞(s) =

∫
Gm

f∞(t.1)|t|sdt = π−s/2Γ(s/2).

ζ∞(s)ζ(s) =
∏
p

ζp(s) =

∫ ∞

0
ys/2

∞∑
n=1

e−n2πydy.
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Geometrization: affine Springer fibers

Orbital integrals for G-actions could be related to Fq-points of certain
infinite type algebraic variety (affine Springer fiber) for G.
Let K ≤ G be a compact open subgroup. Let f ∈ S(X)K . Any x ∈ X
gives a function fx on L ∈ G/K (note G.x ∼= Gx\G)

fx(L) = f(L−1.x).

Orb(G.x, f) =

∫
L∈Gx\G/K

fx(L)dL

G/K is an affine Grassmanian where we could do algebraic geometry.

Example

GLn(Qp)/GLn(Zp) = {lattices in Qn
p}

However, fx is complicated and these fibers are not smooth, nor proper,
and could not be deformed in an algebraic way.
Example: there is no algebraic family whose generic fiber is a chain of
projective lines and the special fiber is a single projective line.
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Orb=local Hitchin densities (Frenkel-Langlands-Ngo)

the local Hitchin map hX : X/G→ X//G from stack to GIT quotient
(assuming X//G is a good quotient).
Think a ∈ X//G(Fx) as the set of regular semi-simple G-orbits on X
(assuming there is a rational Kostant type section X//G→ X, a→ xa).
Let f = 1Ω for a K-stable compact open subset Ω of X (thought as an
integral model of X). Study hX : Ω→ Ω//K (over OF ).

Proposition (why Orb appears in Langlands-Kottwitz method)

Orb(a, f) = #{x ∈ Ω|hX(x) = hX(xa)}.

# means counting volume (F = Qp, Fp((t))). See also Cho-Yamauchi.
We have so called local evaluation map of affine Springer fibers:

evx : {L ∈ G/K|fx(L) ̸= 0} → X(F )/G(O), L 7→ L−1.x

which allow us to pullback Hecke functions on X to affine Springer fibers
e.g. (for H1 ×H2-action on G, pullback Hecke algebra S(K\G/K)).
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Globalization and local-global product formula

Idea (after Ngo): construct a global Hitchin fibration

hX,C :M =Map(C, “[X/G]”)→ A =Map(C, “[X//G]”)

over a curve C, s.t. local geometry of C at a given point remembers
above local geometry. Fibers are called Hitchin fibers.

Proposition∫
hX,C

−1(a) f remembers all local orbital integrals Orb(ax, fx), x ∈ C.

Here we use a global deformed version of “[X/G]” and “[X//G]” (after
choosing a line bundle D on C).

It is very easy to deform global Hitchin fibers, as you can deform
spectral curves easily (hence a defomation of compactified Jacobian).

Moreover, global sheaf theory is well-defined and we even have the
Weil conjecture (global purity)!
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Deformation and global version on C

D = KC is interesting for physics but hard. Let degD >> 0 (avoid
derived stacks). For M with Gm-action, get a bundle D ×Gm M on C.

Proposition (classical Lie algebra case (D ×Gm g)//G, Ngo)

Good deformation exists globally as fibers of Hitchin fibrations.

Example: deformation of curves and compactified Jacobians.

Proposition (classical group case (D×Gm M)//G, Griffin Wang 2024)

Good deformation exists globally as multiplicative Hitchin fibrations.

Use G→M to monoids (Higgs fields with poles), where M behaves like
Lie algebra. Example: GLn → Matn×n. Note G//G ∼= g//G when G is
semisimple and simply-connected (not true generally e.g. torus).

Proposition (relative GGP cases (D ×Gm M)//H, Wang-Z. 2024)

Good deformation exists globally as relative multiplicative Hitchin
fibrations. Kostant section exists (with obstruction for rationality).
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Set up: relative invariant theory on two sides

Let F/F0 be an unramified quadratic extension of local fields. Let V be a
n-dimensional hermitian space over F . Let V ♯ = V ⊕ Fe, (e, e) = 1.

H = U(V )→ Gtot = U(V )×U(V ♯)← H = U(V ).

Proposition (Unitary side)

The H ×H-action on Gtot could be reduced to the conjugacy action of
H on G = U(V ♯).

H ′ = GL(V )→ G′
tot = GL(V )×GL(V ♯)

η← H ′
2 = GLn(F0)×GLn+1(F0).

Proposition (Symmetric side)

The H ′ ×H ′
2-action on G′

tot could be reduced to the conjugacy action
of H ′

0 = GLn(F0) on
GLn+1(F )/GLn+1(F0) ∼= Sn+1 = {γ ∈ GLn+1(F )|γγ = 1}.
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Orbits and orbital integrals

Proposition

There is an natural isomorphism of GIT quotient (preserving character
polynomials G//G ∼= Sn+1//GLn+1)

G//H ∼= Sn+1//H
′
0

hence an embedding of regular semi-simple orbits [U(V ♯)//U(V )]rs
(together with inner forms) to [Sn//GLn(F0)]rs.

Classical version: Lie algebra. We use monoid MG (resp.
MSn+1)“containing” G (resp. Sn+1), and extend above relative invariant
theory to monoids. A universal example: Vinberg monoid.
The advantage of monoid is that it looks like “Lie algebra” (with scaling
actions) and encode information for Satake functions on reductive group
G (rather than Lie algebras).
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Combinatorial matching of Hecke functions

Assume there a self-dual lattice L in V , i.e. V is quasi-split.

Sn+1 → GL(V ♯)← U(V ♯)

Given Cλ = GLn+1(OF )ϖ
λGLn+1(OF ) ≤ GL(V #) (Cartan). Let

CU
λ = Cλ ∩ U(V ♯), CS

λ = Cλ ∩ Sn+1.

1 GLn+1-spherical variety Sn+1 =
∐

λC
S
λ as GLn+1(OF )-orbits.

2 U(V ♯)×U(V ♯)-spherical variety U(V ♯) =
∐

λC
U
λ as

U(L♯)×U(L♯)-orbits.

Matching of functions S(Sn+1)
GLn+1(OF ) → S(U(V ♯))U(L♯)×U(L♯).

Example

1CS
λ
↔ 1CU

λ
, 1SatSλ

↔ 1SatUλ
.

In general, for G-spherical variety X, decompose K\X via K.ax0,
a ∈ A/Stab(x0) = AX (A maximal torus of G) from a coweight
Gm → AX .
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Orbital integrals

Definition (Orbital integral: symmetric side)

Consider f ′ ∈ S(Sn+1), and a regular semi-simple orbit γ ∈ Sn+1(F0).
Define

Orb(γ, f ′) =

∫
h∈GLn(F0)

f ′(h−1γh)η(deth)dh.

η : F×
0 → {±1} be the quadratic character associated to F/F0 by class

field theory. If F/F0 is inert (resp. split ), we have η(x) = (−1)val(x)
(resp. η = 1).

Definition (Orbital integrals: unitary side)

Consider f ∈ S(U(V ♯)), and a regular semi-simple orbit g ∈ U(V ♯)(F0).
Define

Orb(g, f) =

∫
h∈U(V )

f(h−1gh)dh.

Here we normalize the Haar measure such that GLn(OF0) has volume 1.
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Fundamental Lemmas and smooth transfers for Hecke
algebras

Relative fundamental lemmas improve our understandings of relative
Langlands program ([BZSV]), numerically L-functions and period integrals.

Theorem (Wang-Zhang 2024, fundamental Lemmas and smooth
transfers for Hecke algebras)

Assume p > 2n and F0 = Fq((t)). For any strongly regular semi-simple
orbits γ ↔ g and spherical f ′ ↔ f , we have

ω(γ)Orb(γ, f ′) = Orb(g, f).

And ω(γ) ∈ {±1} is a transfer factor such that left hand side only
depends on orbits of γ. Via model theory, our result may be used to obtain
a new global proof of (explicit) smooth transfers for spherical Hecke
algebras over p-adic fields. Methods are general (apply to other cases
without extra symmetry).
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Why Hecke algebras?

Above theorem over p-adic local fields is proved by Spencer Leslie (2022),
via existence of smooth transfers, refined local haramonic analysis
and global comparison of relative trace formulas built on works of
Beuzart-Plessis (2020), which is not known in equal characteristic.

For global automorphic representation π of G, π is built from local
representation πv of Gv.
For almost every place v, πv is unramified and determined by the action of
Hecke algebra S(Kv\Gv/Kv) (Satake isomorphism), which gives a
collection of Hecke eigenvalues.
In good cases, multiplicity one theorem determines π from these Hecke
eigenvalues at v for almost every place v.
Toy model: a Hecke eigenform of positive weight f =

∑
n anq

n is
determined by ap for almost all p.
Therefore, fundamental lemmas for spherical Hecke algebras are
enough in many cases to understand automorphic forms and L-functions.
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Hecke correspondence on modular curves

Compactified modular curve
X0(N) = {N -cyclic isogeny of generalized elliptic curves f : E1 → E2}
For m ≥ 1, (m,N) = 1, the Hecke correspondence Tm on X0(N) given by

Tmx =
∑
C

xC

where the sum is taken over all subgroups C of order m in E1 with
C ∩Kerf = 1, where xC is the point f : E/C → E′/f(C) .

deg Tm =
∑

d|m,d>0

d.
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Reconstruct functions from relative orbital integrals

Proposition (Proposition 8.1.1, spherical AFL, Li-Rapoport-Zhang)

Assume F0 = Qp. For f
′
1, f

′
2 in S(Sn+1)

GLn(OF ), if
Orb(γ, f ′1) = Orb(γ, f ′2) for all regular semi-simple γ, then f ′1 = f ′2.

Proof uses results on local characters on tempered representations (local
Rankin–Selberg periods and the local Flicker–Rallis periods) by
Beuzart-Plessis.
Is the same thing true in char p?
Then spherical FL implies the same is true for

Orb : S(Un+1)
Un×Un 7→ C∞(Un+1(F0)rs).

Base change from Un to GLn=restriction of Satake parameters from
C[T (F )/F (O)]WGLn to C[A(F )/A(O)]WUn (along A∨ → T∨).
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Generalization to singular orbits and orbital integrals

Theorem (Deligne-Ranga Rao (1972))

Classical adjoint orbital integral is convergent for any element γ ∈ G(F ).

For relative orbital integrals on singular obits, regularization are needed.
For transfers e.g.on regular non-semisimple orbits, see

1 Section 7 of “geometric side of the Jacquet-Rallis relative trace
formula” (Weixiao Lu, 2024).

2 ‘Endoscopic transfer for unitary Lie algebras’ (Jingwei Xiao, 2018).

An extension of our fundamental lemmas for Hecke functions to singular
orbits, may be obtained by studying degenerations / truncations of Hitchin
fibers.
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The case n = 1

Let f = 1Ω, f
′ = 1Ω′ . Then U1 acts trivially on U2, we have

Orb(g, f) = f(g) ∈ {0, 1}.

Need to show same thing happens on symmetric side. Let γ =

(
a b
c d

)
.

Orb(γ, f ′) =

∫
t∈GL1

f ′(

(
a t−1c
tb d

)
)η(t)dt =

∑
m∈Z

η(m)f ′(

(
a ϖ−mc

ϖmb d

)
).

=
∑

m η(m) = ±(1− 1 + 1− 1 + 1− 1....) ∈ {−1, 0, 1}.
Everything is computable e.g. take f ′m = 1GL2(OF ).(0,ωm//ω−m,0) you get
η(m) or 0.
See Proposition 7.2.1., 7.3.1. and Remark 7.3.3. of Spherical AFL,
Li-Rapoport-Zhang.
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Monoids for GLn and its Galois twists

We first detwist everything. Set G = GLn, with the standard rep of G.

T ⊆ G maximal torus, Z ⊆ G center.

Consider the universal monoid M of Gsc = SLn. The unit group of
M is (T sc ×Gsc)/Zsc, with center ZM = T sc.

Construction of universal monoid (advantage: deformations remember
all directions given by Satake functions):

ρ∗ :M
× → An−1 ⊕⊕n−1

i=1 End(∧iV ), (z, g) 7→ (αi(z), ωi(z) ∧i g)

Here αi are simple roots and ωi are fundamental weights of G. M
will be the normalization of the closure of ρ∗(M

×).

H = GLn−1 ⊆ G, which is the stabilizer of e = (0, . . . , 0, 1)t ∈ V
and e∗ = (0, . . . , 1)t ∈ V ∗.

Fact: invariant theory M →M//H →M//G (adjoint action) could
be described (affine spaces with Kostant sections). Ex:
dimM//H = (3n− 3).
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Global moduli spaces for deformations

Choose an etale double cover θ : X ′ → X of curve over k. Consider

M/H/ZM →M//H/ZM

We get the multiplicative Hitchin fibration for M from three steps:

Replace [M/H]→M//H by its global deformed version M → C

Apply Map(X,−) to M/(ZM ×Gm)→ C/(ZM ×Gm).

Restrict to the open substack of boundary divisors.

We need Galois twistings of M , which produces ZM′ ≤M′ (symmetric
side) and ZM ≤M (unitary side).

Definition

h :M→A (resp. h′ :M′ → A): the Jacquet–Rallis mH-fibration on the
symmetric (resp. unitary) side.

Additional Gm occurs due to global deformation. Note modulo ZM ×Gm

amounts to choose a ZM -torsor L, and a line bundle D on X.
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Moduli stack of Boundary divisor B

ZM on M plays the role of Gm-action on Lie algebra.
By general theory, the monoid M comes with an abelianization map
(remember An−1-part of ρ)

αM :M → AM =M//(Gsc ×Gsc) ∼= An−1

We have αM (A×
M ) =M×, αM (1) = Gsc. Recall center ZM = T sc.

Example

n = 2, M =Mat2×2, αM :M → A1 is the determinant map. ZM = Gm.

Mapping stack construction naturally lies over B+ :=Map(X,AM/ZM )
(via (M//H)/ZM → (M//G)/ZM → AM/ZM ). Not seen in Lie algebra
version: [g/(G×Gm)]→ [g//G/Gm]→ [∗/Gm].
There is a maximal open Deligne-Mumford substack B, called the moduli
stack of boundary divisors. Pull back to B to make things well-behaved.
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Deformed quotient stack over k = Fq

Let S be a k-scheme. Let M(S) be the groupoid of (E , x, e, e∨) where
E a vector bundle on X × S of rank n,

x a section in M ×G E(S),
e : OS → E .
e∨ : E → OS .

Get M → A1, (E , x, e, e∨)→ e∨ ◦ e ∈ OS .
The preimage of 1 is M1

∼= [M/H].
Obtain the map M → C :=M//H × A1 as global deformation of
[M/H]→M//H.
There is an addition action of Gm on M by scaling e and e∨, preserving
e∨ ◦ e.
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Affine Jacquet–Rallis fibers

M h→ A h′
←M′

The strongly regular semi-simple locus A♡ ⊆ A is the complement of a
relative discriminant divisor DiscM,H .
For any local place v of X (split or inert), local Hitchin map gives

Mv
χ→ Cv

χ←M′
v

Definition

Choose strongly regular semi-simple a ∈ Cv(Ov)
♡, consider

Mv(a) := χ−1(a) ∩M(Ov) (resp. M′
v(a) := χ−1(a) ∩M′(Ov)) as affine

Jacquet-Rallis fiber for symmetric side (resp. for unitary side).

At a split place v, take (γ, e, e∗) with invariant a, we have
Mv(a)(k) =M′

v(a)(k) = {Λ ⊆ Vv|γiΛi ⊆ Λi, e ∈ Λ, e∗ ∈ Λ}.
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Matching orbits and Hecke functions as Satake sheaves

Matching of functions S(Sn)GLn(O′) → S(Un)
Un(O)×Un(O). Affine

Grassmanian

Sn/GLn(O
′)→ GLn(O

′)\GLn(F
′)/GLn(O

′)← Un(O)\Un(F )/Un(O)

From geometric Satake, we have the GLn(O
′)-equivariant perverse sheaves

Satλ on affine Grassmanian for GLn(F
′)/GLn(O

′). Pull back we get

Definition

ICS
λ (resp. ICU

λ ): the pullback of local Satake sheaf to Sn/GLn(O
′)

(resp. Un(F )/Un(O)) with highest coweight λ.

We may further pullback these sheaves to affine Jacquet-Rallis fibers (via
local evaluation map to affine Grassmanian). Via function-sheaf dictionary
F → #F (−), fundamental lemma is equivalent to

Proposition (Local identity, Lη onM♡
v , Wang-Z. 2024)

#ICS
λ⊗Lη

Mv(a)(kv) = #ICS
λ
M′

v(a)(kv).
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Comparison of perverse sheaves and global equality

Proposition (Global identity)

On a dense open subset of A♡, we have Rh∗(IC
S
λ ⊗ Lη) ∼= Rh∗(IC

U
λ )

(up to semi-simplification) as perverse sheaves.

Proved via stratified smallness of Hitchin fibrations and some simple
computations. Similar to Yun’s proof of Jacquet-Rallis fundamental
lemma, but no spectral curves are used.
By local-global product formulas, local model of singularity, we get local
equality from global identities.
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why it is semi-small
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Schedule

1 Motivation: global proofs of local conjectures

2 Formulation of orbital integrals and local fundamental lemmas

3 Global proof of local fundamental lemmas

4 Future works from relative Langlands program
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Relative Langlands duality and orbital integrals

Moment map µ :M = T ∗X → g∗ (symplectic cotangent stack).
µ//G : T ∗X//G ∼= t∗X//WX → t∗//W ∼= g∗//G.
Future hopes: a story for general M (with interesting microlocal
geometry). Then Orb could be defined for functions on Lagrangians of M
but only depends on M (Fourier transforms commute with transfers).

Orb : S(X)K → Func(X//G)

OrbRTF : S(X ×X)K×K → Func(X ×X//G).

Example (S(V r) = Weil rep ω of Gr = U(r, r), V hermitian space)

Hermr
∼= Nr ≤ Gr radical of Siegel parabolic. For φ ∈ S(V r), g ∈ Gr,

WT (g, φ) :=

∫
b∈Nr(F )

(ω(w−1
r )ω(b)ω(g).φ)(0)ψ(−Tr(Tb))db.

When r = dimV and k ≥ 0, get WT (s = k, g = 1, φ) = local density of
hermitian lattices (from T to Lφ ⊕ ⟨1⟩2k).
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Structures of polarized M and Hecke modules

Question: a uniform way to prove conjectures for all good examples?
A side (G,M): periods / orbital integrals. (“automorphic quantizations”).
B side (G∨,M∨): L-functions (“spectral quantizations”).
(G,M)⇝ (G∨,M∨ = WhitIndG

∨
ι (SX)) (symplectic rep SX via even

spherical colors of X, ι : G∨
X × SL2 → G∨).

Example: (PGL2, T
∗(PGL2/Gm))⇝ (SL2, T

∗A2).

Conjecture (BZSV, conjecture 7.5.1, which assumes M = T ∗X.)

Sh(XF /GO) = QCohshear(M∨/G∨(−2ρ))

compatible with pointings (conjecturally M∨//G∨ = h∨,∗//H∨ is an
affine space, L-algebra=O(M∨//G∨)), Hecke actions, Galois actions and
Poisson structures.

Version over Fp implies a description of G(O)\G(F )/G(O)-action on
S(X)K . Note H(F )\G(F )/G(O) = Λ∨

X/WX (Cartan decomposition)
only depends on M . And M∨ = SX is linear if M is strongly tempered.
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Kostant sections and gauge fixing in physics

Theorem (Kostant 1963)

Let G be a complex semi-simple group, g = LieG.

1 There exists a global slice S ⊆ g∗reg for the coadjoint action.

2 The stabilizer Gx is abelian for x ∈ g∗reg.

3 (Codimension / Hartogs) holmorphic functions on g∗reg extends to g∗.

4 (Kirillov-Kostant-Souriau) each coadjoint orbit G.x is symplectic.

Proof uses sl2-triples. Crucially used in proving fundamental lemma via
regular centralizers [Ngo10, Section 2], proving derived Satake equivalence
[BF08], Whittaker reduction of T ∗G and H∗

G(O)(GrG) [BFM05].

Conjecture

For a G∨-variety M∨, find Kostant section for M∨/G→M∨//G∨?

Relative Satake via taking cohomology (Devalapurkar, 2024)
M∨//G∨ ×κ,M∨/G∨,κ M

∨//G∨ = J∨ = H∗
G(O)(V (F )).
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Examples

1 Examples where G∨
X is small (rank 1 or 2, highly non-tempered)

G GLn SOn Sp2n SL3 G2 Spin7 F4 E6

H GLn−1 SOn−1 Sp2n−2 SO3 SL3 G2 Spin9 F4

Theta correspondence are useful to study them (both locally and
globally). See also generalized Whittaker models (Gan-Jun, 2024).

2 Examples where G∨
X = G∨ (iff strongly tempered iff all root type T ,

related to today’s talk):
G GLn−1 ×GLn SOn−1 × SOn

H GLn−1 SOn−1

3 A Levi L is spherical in a split classical group G (Kramer’s
classification):

GLj ×GLn−j ⊆ GLn, SO2 × SO2n−1 ⊆ SO2n+1, GLn ⊆ SO2n+1,

Gm×Sp2n−2 ⊆ Sp2n,GLn ⊆ Sp2n, SO2×SO2n−2 ⊆ SO2n,GLn ⊆ SO2n.

4 Can also consider non-smooth or non-homogeneous examples.

5 (Whittaker induction) (H,M)⇝ (G, (M × n/n+)×HN
h∗⊕n∗ (T

∗G)).
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Thank you for Listening
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