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Abstract

The Multi-Depot Vehicle Routing Problem (MDVRP) is a generalization of the
Single-Depot Vehicle Routing Problem (SDVRP) in which vehicle(s) start from multi-
ple depots and return to their depots of origin at the end of their assigned tours. The
traditional objective in MDVRP is to minimize the sum of all tour lengths, and existing
literature handles this problem with a variety of assumptions and constraints. In this
paper, we explore the notion of minimizing the maximal length of a tour in MDVRP
(“min-max MDVRP”). We present two heuristics in the paper. The first heuristic is a
linear programming-based approach with global improvement. The second one, the re-
gion partition heuristic, is proved to be asymptotically optimal and is potentially useful
for general network applications. A comparison of the computational implementations
for different heuristics is presented.
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1 Introduction
The Vehicle Routing Problem (VRP) has been one of the central topics in optimization

since Dantzig proposed the problem in 1959 [7]. A simple general model of VRP can be
described as follows: a set of service vehicles need to visit all customers in a geographical
region with the minimum cost.

In the Single-Depot Vehicle Routing Problem (SDVRP), multiple vehicles leave from a
single location (a “depot”) and must return to that location after completing their assigned
tours. The Multi-Depot Vehicle Routing Problem (MDVRP) is a generalization of SDVRP
in which multiple vehicles start from multiple depots and return to their original depots at
the end of their assigned tours. The traditional objective in MDVRP is to minimize the sum
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of all tour lengths, and existing literature handles this problem with a variety of assumptions
and constraints.

In this paper, we explore the notion of minimizing the maximal length of a tour in a
MDVRP (“min-max MDVRP”) using both theoretical analysis and heuristic design. To the
best of our knowledge, no prior exploration of min-max MDVRP has been published, but this
formulation is advantageous for a number of applications. For example, consider a network
model in which depots represent servers and customers represent clients. A network routing
topology generated by solving min-max MDVRP results in a set of daisy-chain network
configurations that minimize the maximum latency between a server and client. This can
be advantageous in situations in which the server-client connection cost is high but the
client-client connection cost is low.

The formulation of min-max MDVRP is as follows, with the assumption that all points
are randomly and uniformly distributed in a Euclidean plane:

minimize λ
subject to TSP (Si) ≤ λ, ∀i

∪Si = N ,

where N is the set of all customers, Si(⊂ N ) is the subset of customers assigned to vehicle
i, and TSP (S) is the minimal TSP tour length that visits all customers in set S.

The implementation results demonstrate the efficiency of the heuristic methods devel-
oped in this paper, as they reduce MDVRP to a sequence of smaller-scale TSP problems in
polynomial time. In addition, the sum of all tour lengths that our methods generate is highly
comparable to the minimized total lengths produced by traditional approaches. And these
methods are also capable of quickly processing tens of thousands of customers, a scalability
property which is becoming increasingly important as networks expand in size.

In this paper we first give a theoretical analysis for the optimal solution of min-max
MDVRP by developing lower and upper bounds. We show that the optimal solution to
min-max MDVRP is asymptotically close to the optimal TSP tour of all customers divided
by the number of depots when the ratio of customers to depots is high. The same conclusion
applies to the solution generated by a region partition algorithm when the number of depots
is fixed.

Then we develop two heuristics to min-max MDVRP. The first heuristic is a linear
programming-based heuristic with a global load balancing technique. By starting from a
simple linear programming-based algorithm, we rapidly assign customers to depots and gen-
erate TSP routes for each vehicle. The solution is further improved in a post refinement
period in which we keep changing certain parameters globally. Next, noticing that a convex
equitable region partition yields an even division of points (i.e., if we divide the service region
into a set of subregions with equal area, then each subregion will contain – asymptotically
– the same number of points), we propose a fast approximation algorithm to generate good
initial solutions for min-max MDVRP. The solution can then be improved with common local
improvement procedures. Moreover, this region partition method, for which we demonstrate
both theory and implementation, is potentially useful in many network design problems
with regular topology structures, such as the Steiner tree and the minimum spanning forest
problem.
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The simulation results of these two methods and a routine heuristic are compared and
analyzed in the performance analysis section. Finally, we summarize our results and address
future research issues.

2 Asymptotic Bounds on Min-Max MDVRP

2.1 Analysis of Optimal Solutions

Since the MDVRP is NP-hard, researchers have made compelling efforts to design heuris-
tics; in addition, exploring the theoretical bounds of this problem has been an intriguing topic
as well. Baltz et al. proved that the sum of all tour lengths asymptotically approaches αkn

d−1
d

with the uniform distribution, and αk depends on the number of depots. In this section,
we provide lower and upper bounds for min-max MDVRP in a planar graph and prove its
asymptotic convergence for a broad class as the problem size expands. To provide context,
we will first review known results for the probabilistic TSP. The most celebrated discovery
is the BHH theorem (1959) by Beardwood, Halton and Hammersley.

Theorem 1. (BHH Theorem) Suppose Xi’s, 1 ≤ i ≤ n, are independent and identically
distributed random points uniformly distributed in a unit cube [0, 1]d, d ≥ 2. Then with
probability one, the length TSP ({X1, X2, · · ·Xn}) of an optimal TSP tour traversing all
points satisfies:

lim
n→∞

TSP ({X1, X2, · · · , Xn})/n d−1
d = α(d),

where α(d) is a positive constant depending on d.

Considering that we are only interested in planar graphs, we assume all customers and
depots are uniformly and randomly distributed in a unit square, and define α ≡ α(2) in
our discussion. Denote the set of depots by D = {D1, D2, · · · , Dm}, |D| = m. Denote
the set of vehicles by V = {V1, V2, · · · , Vk}, |V| = k ≥ m. In the case k = m, we always
assume each depot has one single vehicle. Denote the set of nodes(or customers) by N =
{N1, N2, · · · , Nn}, |N | = n. We will use node and customer interchangeably in this paper.
Denote the value of an optimal solution to min-max MDVRP by L, i.e., L is the length
of the longest tour. Denote the largest distance between an arbitrary pair of points in two
different sets A and B by d(A,B), i.e., d(A,B) = max

x∈A,y∈B
||x− y||.

First we have the following observation:

Lemma 2. For a general planar graph (points do not necessarily follow any distribution),

TSP (D ∪N )− TSP (D)

k
≤ L ≤ TSP (N )

k
+ 2 ∗ d(D,N ).

Proof. Consider the lower bound first.
In an optimal pattern of min-max MDVRP, assume the sum of all tour lengths is Sopt.

Note that L is the longest tour, we have

k ∗ L ≥ Sopt.
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Add an optimal TSP tour T for all the depots to this pattern. Now each point(node or
depot) in the graph has an even degree, which implies an Euler tour. This Euler tour can
be reduced to a feasible TSP tour for the set of all the depots and nodes. Then,

Sopt + TSP (D) ≥ TSP (D ∪N ).

Therefore,

L ≥ TSP (D ∪N )− TSP (D)

k
.

For the upper bound, consider a tour partition heuristic.

Heuristic 1 Tour Partition Heuristic
1. Generate an optimal TSP tour for all the nodes.

2. Partition this tour into k equal subtours t1, t2, · · · , tk.
3. Connect both the starting and ending nodes of subtour ti to the depot where vehicle

i stays.

This heuristic generates a feasible solution for the MDVRP. The maximal tour length,
which is an upper bound of L, is at most

TSP (N )

k
+ 2 ∗ d(D,N ).

The proof implies that the lower bound holds even when L is the average length of all
the tours, so it is not tight. However, when the ratio of nodes to depots is high, we can
derive the asymptotic bounds for L.

Corollary 3. (a) When k = o(
√

n),

lim
n→∞

L√
n/k

= α.

(b) For non-fixed MDVRP, i.e., a vehicle can start from and return to arbitrary different
depots, if n = Ω(k log2 k) and k = m,

lim
n→∞

L√
n/k

≤ α.

Proof. (a) According to the BHH theorem, for arbitrarily small ε, when n,m are sufficiently
large,

α((1− ε)
√

m + n− (1 + ε)
√

m)

k
≤ L ≤ α(1 + ε)

√
n

k
+ 2d(D,N ) + ε. (1)
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Noticing that m ≤ k and k = o(
√

n), we know
√

m/k is less than 1, while
√

m+n
k

goes
to infinity as n goes to infinity. On the other side, d(D,N ) is bounded by a constant while√

n/k goes to infinity as n goes to infinity.
(b) Consider the tour partition heuristic. Then at Step 3 in Heuristic 1, for each subtour

ti, instead of connecting its starting and ending nodes to the depot where vehicle i stays,
we consider a perfect matching between depots and starting points of subtours, and another
perfect matching between depots and ending points of subtours.

The min-max perfect matching for uniformly distributed points has the bound provided
by Leighton and Shor in 1989 [13]: if Xi’s and Yi’s are independent and uniformly distributed
points on a unit square for 1 ≤ i ≤ r, then there exists a constant C, such that

min
σ∈P

max
1≤i≤r

||Xi − Yσ(i)|| ≤ Cr−
1
2 (log r)

3
4 (2)

with probability one as r →∞, where P is the set of all permutations of {1, 2, · · · , r}.
First apply the bound (2) to depots and all starting points of subtours. Then apply it

again to depots and all ending points of subtours. We get L ≤ α(1+ε)
√

n
k

+ 2Ck−
1
2 (log k)

3
4 .

With the assumption n = Ω(k log2 k), we complete the proof.

For the general case k = λn+ o(n), λ ≥ 0, Baltz et al. [3] proved that the sum of all tour
lengths asymptotically approaches α′

√
n as n → ∞, where the constant α′ is equal to the

TSP constant α for the case λ = 0 and depends on λ for the case λ > 0. Therefore, we can
obtain a direct lower bound according to their results.

Lemma 4. When k = λn + o(n), λ ≥ 0,

lim
n→∞

L√
n/k

≥ α′,

where the constant α′ is defined as above.

2.2 Bounds by Region Partition Heuristics

Based on the discussion above, we can conclude that the optimal solution to min-max
MDVRP with uniform distributed points will numerically approach α

√
n/k, the value of

the optimal TSP tour of all customers split by the number of vehicles, under the constraint
k = o(

√
n). This matches our intuition, although the constraint is restrictive. We would like

to relax this constraint to a broader class and derive some nontrivial bounds by analyzing
local performance in large size problems. In this section, we will analyze a region partition
heuristic with theoretically good performances, and an estimation on upper bounds for all
cases k = Ω(

√
n) derived from a grid region partition.

Before presenting the heuristics, we need several lemmas to review some facts:

Theorem 5. (Convex Region Partition Theorem) Given k points in a convex bounded planar
polygon, it is always possible to find a partition of the domain into k equal-area convex
polygons, with exactly one point in each face.
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This convex region partition theorem was proved in [4] for both continuous and discrete
versions, and an algorithm for discrete version was also given. An algorithm for the contin-
uous version, i.e. the convex region partition described in the theorem was recently revealed
by Carlsson and Armbruster [1].

For the time being, we assume an equitable partition exists and develop a theoretical
rationale for the desirability of such a partition. The next two lemmas will prepare us some
important backgrounds for analyzing region partition approaches.

Lemma 6. (Occupancy Lemma) Randomly put n balls into m bins with equal probability. If
n = Ω(m log2 m), then the number of balls in the bin holding the least balls has an asymptotic
performance as n

m
. So does the number of balls in the bin holding the most balls.

Proof. This fact can be proved by Chernoff bounds. We will give a sketch of the proof here.
We only consider the case n = m log2 m here. For an arbitrary bin, define xi is 1 if the

ith ball falls into this bin, and 0 otherwise. Let Si = x1 + x2 + · · · + xi. Note that the
expected number of balls falling into a bin is log2 m. From the Chernoff bounds [12],

P = Prob(Sn ≤ n

m
(1− 2

√
2

log m
)) ≤ e−nD(p−px||p),

where p = 1
m
, x = 2

√
2

log m
, D(a||b) = a log a

b
+ (1− a) log 1−a

1−b
.

When m is sufficiently large, we have

e−nD(p−px||p) ≤ e−n(px2/4) =
1

m2
.

Therefore, the probability that one bin has less than n
m

(1 − 2
√

2
log m

) balls is at most

mP ≤ 1
m
.

Similarly, by applying another Chernoff bound, we can also prove that the probability
that one bin has more than n

m
(1 + 2

√
2

log m
) balls is at most 1

m
.

Simple scaling arguments show that the BHH theorem still holds even if the unit cube is
replaced by an arbitrary compact subset K in Rd in [18]. This fact suggests that the limit
is independent of the shape of the compact set K.

Theorem 7. (generalized BHH Theorem [18]) In particular, if for i ≥ 1, Xi’s are i.i.d with
uniform distribution on a compact set K of Lebesgue measure one, the BHH theorem still
holds.

We consider a region partition heuristic for min-max MDVRP for the case k = m.

Heuristic 2 Region Partition Heuristic
1. Divide the region into k equitable convex polygons such that each polygon has exactly

one vehicle inside.

2. Find an optimal TSP tour for each vehicle and the nodes in the same subregion.

With the fixed number of depots, we have
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Figure 1: The perturbation method, and its subsequent effects on assignment and routes
generation. Here the routes are suggested by arrows emanating from each depot node.

Lemma 8. If k=O(1), the solution L generated by Heuristic 2 satisfies:

lim
n→∞

L√
n/k

= α.

Proof. Assume the region with the most nodes has Nmax = n/k + t nodes. From Occupancy

lemma, we know lim
n→∞

t

n/k
= 0. Therefore, from the generalized BHH theorem, we know:

L ≤ α(1 + o(1))
√

Nmax

√
1

k
≤ α(1 + o(1))

√
(1 + o(1))

n

k

√
1

k
≤ α(1 + o(1))

√
n

k
.

On the other hand, since the region with the most nodes has at least n/k nodes, the
claim is true:

lim
n→∞

L√
n/k

= α.

The lemma implies that the length of the longest tour generated by the region partition
heuristic is asymptotically close to a lower bound when the size of the problem expands.
Thus this heuristic is asymptotically optimal in this case.

If vehicles are more than depots available (k > m), we can use the perturbing idea to
generate their routes. In this procedure, if there are two or more vehicles on the same depot,
we only need to slightly relocate vehicles evenly distributed on a small circle encircling that
depot (Figure 1). For a sufficiently small perturbation, the algorithm remains feasible, and
the optimal value only changes marginally.

If the ratio of n to k is smaller, for example, n = O(k log k), it is harder to predict the
optimal solution. Motivated by the Occupancy lemma, we still can derive an asymptotic
upper bound. The following theorem illustrates an extreme case:

Theorem 9. Assume k = m, i.e., all vehicles are i.i.d. in the square. If the number of
vehicles is proportional to the number of nodes, i.e., k = λn, 0 < λ < 1, then with probability
one, as k →∞,

L ≤ (
α

λ
+ 2

√
2 log n)

1√
n

.
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Proof. We divide the unit square into n/ log2 n smaller squares each of which has the side
length log n/

√
n. Then, from the Occupancy lemma, we know that any small square has

at most log2 n + O(log n) nodes and at least λ(log2 n − O(log n)) vehicles with probability
one as n → ∞. Apply the tour partition heuristic to the square with the most customers.
According to the generalized BHH theorem and Lemma 2, we have

L ≤
α
√

log2 n + O(log n)

λ(log2 n + O(log n))

log n√
n

+ 2
√

2
log n√

n
≈ (

α

λ
+ 2

√
2 log n)

1√
n

.

Applying the similar argument, we obtain an upper bound for the case k = Ω(
√

n):

Corollary 10. Assume all vehicles are uniformly distributed in the cube and k = Ω(
√

n),
then with high probability, as k →∞,

L ≤ α
√

n

k
+ 2

√
2
log k√

k
.

3 An LP-based Load Balancing Heuristic
We present a linear programming-based heuristic in this section, which uses a global load

balancing technique during post-refinement periods.
Although many heuristics have been applied to solve the SDVRP and MDVRP, we are

unaware of any existing specific heuristic or theoretical results for min-max MDVRP, espe-
cially in the large-size case. In general literature, one idea to solve the MDVRP is a two-stage
heuristic(for example: Wren and Holliday [17]): construct an initial solution, then apply a
number of local improvements. The initial solutions in common heuristics are usually con-
structed by the nearest neighbor assignment. Gillet and Johnson [9] proposed a clustering
heuristic which used a sweep heuristic at each depot. Golden et al. [11] presented two heuris-
tics for MDVRP; the second one specifically solved the large-size problem by a two-stage
algorithm which assigns nodes to depots first and then built TSP tours for each vehicle. Chao
et al. [5] proposed a simple initialization heuristic followed by a refinement, which gained
the best performance in many benchmark problems. In 2002, Giosa et al. [10] demonstrated
a series of 2-stage heuristics to solve MDVRPTW. Recently, Lim and Wang [14] gave a
one-stage approach to MDVRP with the constraint each depot only has a fixed number of
vehicles. Baltz et al. [2, 3] presented a probabilistic analysis of the optimal solution for the
problem. Tansini [16] proposed a polynomial-time approximation scheme (PTAS) for the
MDVRP similar to Arora’s PTAS algorithm for TSP.

Our heuristic is based on a load balancing idea: the load for each vehicle must be almost
balanced in an optimal plan, so each vehicle is assigned the same working load in terms of
the number of nodes to serve. This intuition is plausible considering that the distribution of
nodes in our model is uniform. We carefully balance the number of nodes assigned to each
depot by linear programming at the first step, then generate a near-optimal route for each
vehicle by using the Concorde TSP solver [6]. The solution is further improved by global
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Figure 2: The initial input (a), the assignment (b), and the final construction of TSP tours
(c).

adjustment of the number of nodes assigned to vehicles, rather than traditional local search
procedures.

Assume all customers are uniformly distributed on a square and the locations of depots
are randomly distributed. A depot is allowed to have more than one vehicle. Each vehicle
must return to the depot from which it originates. First we assume that each depot has
exactly one vehicle, and no two depots share a location (this assumption will be generalized
later). Suppose each node Xj, 1 ≤ j ≤ n, is located at (xj, yj), and each vehicle Vi, 1 ≤ i ≤ k,
is located at (vi, wi). The distance cij between Xj and Vi is ||(xj, yj)− (vi, wi)||.

Define xij to be a binary variable indicating if node Xj is assigned to vehicle Vi or not.
We build an integer program for clustering:

(LP ) : minimize
∑

1≤i≤k,1≤j≤n

cijxij

subject to
∑

1≤j≤n

xij =
n

k
, ∀i,

∑

1≤i≤k

xij = 1, ∀j,

xij ∈ {0, 1}, ∀i, j,

where we assume that n/k is an integer(the fractional case will be discussed later).
Note that its linear program relaxation (LPR) is a typical network flow model, so any

vertex solution to LPR will be integral. Therefore, we can directly solve LPR for the initial
assignment.

A sketch of the heuristic is as follows:
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Heuristic 3 LP-based Load Balancing Heuristic
1. Build LPR and solve it.

2. Build a TSP tour for each vehicle by the Concorde solver. Assume that their lengths
are sorted in a descending order {L1, · · · , Lk}.

3. If (L1 − Lk)/Lk ≤ r, with r a small constant, or if the linear program has been run
many times, stop and output a current best solution. Otherwise, decrease the number
of nodes assigned to vehicles having longer tours and increase the number of nodes
assigned to vehicles having shorter tours (we will explain details later). This way, a
new revised LP is generated. Return to step 1 and repeat the procedure.

A sketch of the heuristic in one loop is shown in figure 2.
There are several details we need to explain in our algorithm.
Note 1: If n/k is fractional. Assume n = pk+q. p and q are integers and q is the residue.

Then we assign the first q vehicles p + 1 nodes and assign each of the remaining vehicles p
nodes. Thus the number of nodes assigned to each vehicle is always an integer.

Note 2: Constant r in step 3 is a ratio threshold to measure the output, which can be
adjusted according to the need for accuracy. In most cases, setting r = 25% is enough to
achieve a satisfactory result.

Note 3: At step 3, if (L1−LK)/LK ≤ r, we adjust the number of nodes assigned to each
depot by the following procedure:

• Build the sets L+ = {i : Li− L̄ > 0}, L− = {i : Li− L̄ < 0}, where L̄ is the average of
tour length.

• Without loss of generality, assume s = |L+| ≥ |L−|. For any i ∈ L+, define the relative
drift d+

i = Li−L̄
L̄

. Decrease the number of nodes assigned to depot i by [c ∗ di

r
](c is a

constant empirically decided. We set c = 2 in implementation). Sort elements in L−

in the descending order of their tour lengths. Then define d−i = L̄−Li

L̄
for the first s

elements in L−. Increase the number of nodes in the same way.

• If the number of nodes removed from L+ is more than the number of nodes added to
L−, add one node to each element in L− sequentially starting from the depot which
has the fewest nodes, keep doing that until nodes are balanced. Repeat the similar
procedure for the contrary case.

3.1 Multiple Vehicles on a Depot

We have assumed that each depot includes exactly one vehicle in all the heuristics afore-
mentioned. However, in a practical situation, multiple vehicles may lie on the same depot.
We need to extend our heuristics to this general case. If we still follow the original pro-
cedures and assign the same number of nodes to each vehicle instead of each depot, the
solution is poor, because nodes are assigned to each such vehicle randomly – therefore, our
initial geometric intuition for node assignment is lost (Figure 3).
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Figure 3: Problems encountered when multiple vehicles are assigned to a single depot. (a) is
the initial node set given to the problem (we have 8 vehicles and 4 depots) and (b) represents
a solution without the perturbation applied. (c) represents a solution with the perturbation
applied; it is clearly preferable, as vehicle routes do not intersect.

In order to work around this difficulty for vehicles in a same depot, we perturb the
locations of vehicles located at the same depot before generating cij’s. Each vehicle is
relocated to a new location lying in a small circle around that depot, keeping them evenly
distributed on that circle. This small change will dramatically improve the final solution
(Figure 1). We can generate good solutions with this technique.

4 A Region Partition Heuristic
The second heuristic we present is the region partition heuristic (Heuristic 2) based on

the algorithm in [1] that takes as input a convex planar region C and a set of m depots
D = {D1, . . . , Dm}, and outputs a partition of C into m convex subregions satisfying the
following properties:

• Each subregion is convex.

• Each subregion contains one depot Di.

• Each subregion has equal area.

Note that a Voronoi diagram satisfies the first two properties, but not the third. An example
of such a partition is shown in figure 4.

As mentioned previously, the requirement that each subregion have equal area ensures
that the lengths of the TSP tours of each region be equal asymptotically [18]. This result
applies to any compact subset of R2 with Lebesgue measure one, but we require that these
regions be convex for practical purposes. The shortest path between any two cities in a
subregion Ri is a straight line, and we want to ensure that the route taken from these one
city to the next lie in the same service region and therefore be feasible.

Many network structures, like minimum spanning trees and Voronoi graphs, have conclu-
sions similar to that of the travelling salesman tour, i.e., their lengths converge asymptotically
in a manner similar to the BHH theorem. For example, [19] describes a similar result for
Minimum Spanning Tree (MST). Region partition is therefore a potentially powerful tool not
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Figure 4: An equitable partition of a convex polygon.

only in vehicle routing but also in many network applications, such as finding the minimum
spanning forest of a node set with fixed roots. It is worth extra effort to investigate how to
implement partition quickly. Bespamyatnikh et al. [4] gave the proof for the existence of a
convex region partition and an algorithm with runtime O(N

4
3 log N) for the discrete version

in which the dividing subjects are red and blue points. And N is the sum of the number of
nodes and sides of the initial polygon. Given that an area can be approximated within any
ε factor by taking enough sampling points, we can implement their algorithm to obtain a
near-optimal convex subdivision. We have also been searching for a quick method to realize
the algorithm. Our best result is the realization of an equitable partition of a polygon and
a set of n points in O(Nn log N) time.

5 Performance and Analysis
No specific benchmark problems for min-max MDVRP are available in the literature.

Most available MDVRP benchmarks have time window constraints, and their sizes are gen-
erally small, varying between 50 ∼ 1000(see [15]). Thus, we generated 13 MDVRP bench-
mark sets ourselves and the results are reported in this section. These sets vary in size with
respect to the number of depots (2 to 20) and number of nodes (100 to 2048), and the depot
and node locations. Each set contains 4 instances, each with the same number of depots and
nodes, but randomly generated depot and node locations. The data presented represent the
average values obtained over the 4 instances for each benchmark set. Tests were conducted
on a Pentium 4 1.8GHz/512MB notebook. The implementation was done in Matlab with
the COPL LP Solver [20] and the Concorde TSP solver [6].

In Table 1 and 2, we compare the initial solutions provided by three heuristics: the LP-
based heuristic, the region partition heuristic and a traditional nearest-neighbor approach
which can be stated as follows:
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Heuristic 4 Nearest Neighbor Heuristic
1. Assign each node to its nearest depot.

2. Build a TSP route for each vehicle accordingly; get an initial solution for the problem.

3. Run the local improvement method to improve the solution.

We have also implemented a modified version of a local improvement procedure proposed
by Chao et al. [5] called “1-point movement”. In Table 3 and 4, we present the final outputs of
four heuristics. The first heuristic uses the LP-based load balancing heuristic ( Heuristic 3) to
distribute the load evenly among vehicles. The other three heuristics all use the modified 1-
point movement improvement method in their post optimization periods although they start
with different initial assignments. The second heuristic uses the same initial assignment as
the first heuristic. The third heuristic starts with the region partition method, and the last
one starts with the nearest neighbor assignment.

We have applied different heuristics on each instance and presented in the tables the
value of the longest tour(“Max”), the value of the shortest tour(“Min”), the average value
of all tours(“Mean”) and the CPU time(“Time”). The primary goal of these heuristics is to
minimize the value of the longest tour. The running time of the LP-based load balancing
heuristic is primarily comprised of the execution time of the LP and TSP solvers. The
running time of the region partition with local improvement method (Heuristic 2) mainly
consists of the running time of the region partition heuristic and TSP solvers. For small to
medium-sized benchmarks, the main bottleneck for all heuristics is finding a near optimal
TSP tour for each depot using the Concorde solver.

We have made the following observations based on the simulation results presented in
the tables.

First, according to Table 1 and 2, both LP-based and region partition heuristics pro-
duce notably better initial routes than the traditional nearest neighbor approach. They are
efficient and effective candidates for the initial assignment.

Second, the region partition heuristic with local improvement produced the best solu-
tions(“Max”) for 7 out of 13 instances, and the LP-based load balancing heuristic generated
the best solutions for 5 out of 13 instances. They both maintained a competitive running
time, as seen in Table 3 and 4.

Third, when the number of depots is small, the region partition heuristic tends to out-
perform the other three heuristics, and its running time remains low. The LP-based load
balancing heuristic performs better as the number of depots is increased.

Fourth, the region partition heuristic with local improvement and the LP-based load
balancing heuristic not only improve the maximal tour length as compared to the initial
solution, but they also do not significantly increase the sum of all tour lengths, suggesting
that the adjustment will not lead to a major global increase in cost.

Finally the region partition heuristic with local improvement generates a higher total
cost than the LP-based load balancing heuristic in most instances, though it obtains the
best results for min-max MDVRP in more instances than the latter. This fact demonstrates
that the difference of objective functions between usual MDVRP and min-max MDVRP
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Table 1: Summary of First Iteration Solutions for Three Heuristics

LP-TSP Region Partition
Dataset Depots Nodes Max Min Mean Time Max Min Mean Time
d2n100 2 100 472.61 391.12 431.87 1.07 429.22 399.90 414.56 1.10
d2n500 2 500 870.76 847.10 858.93 41.70 875.66 843.35 861.00 28.34
d5n100 5 100 242.12 159.50 197.15 1.13 209.24 162.26 190.24 2.20
d5n500 5 500 378.95 332.04 356.64 6.43 377.97 334.34 356.03 9.06
d5n1000 5 1000 542.37 467.60 503.22 35.65 522.34 473.58 497.20 36.73
d10n1000 10 1000 283.32 225.20 252.86 11.03 277.63 233.97 255.43 41.11
d10n2000 10 2000 380.10 331.38 355.08 115.34 378.11 317.47 353.58 180.76
d16n256 16 256 161.22 75.21 106.87 12.16 140.74 70.26 105.51 21.47
d16n512 16 512 182.11 106.46 132.74 10.95 172.55 106.58 131.59 22.32
d16n1024 16 1024 206.95 149.55 173.64 17.31 196.16 145.83 169.19 57.66
d16n2048 16 2048 263.61 207.90 231.87 91.03 253.85 206.56 229.62 230.51
d20n1000 20 1000 172.29 117.07 139.24 24.95 170.34 118.31 138.16 84.88
d20n2000 20 2000 207.23 167.49 184.83 83.02 222.11 160.57 185.62 177.91

Table 2: Continued: Summary of First Iteration Solutions for Three Heuristics

Nearest Neighbor
Dataset Depots Nodes Max Min Mean Time
d2n100 2 100 574.85 260.88 417.85 0.35
d2n500 2 500 1097.33 715.18 906.25 48.33
d5n100 5 100 268.58 95.23 186.30 0.20
d5n500 5 500 519.58 223.48 369.35 5.00
d5n1000 5 1000 1101.95 163.28 511.98 295.65
d10n1000 10 1000 451.18 83.50 257.03 11.68
d10n2000 10 2000 688.58 178.15 361.55 351.40
d16n256 16 256 186.23 23.03 91.40 1.38
d16n512 16 512 265.48 32.13 122.93 2.33
d16n1024 16 1024 419.10 50.58 167.35 12.55
d16n2048 16 2048 496.25 72.25 230.63 243.13
d20n1000 20 1000 278.38 36.50 134.63 8.75
d20n2000 20 2000 368.88 57.25 183.35 49.10
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Table 3: Summary for Improved Heuristics

LP-TSP + Load Balancing LP-TSP + Local Improvement
Dataset Depots Nodes Max Min Mean Time Max Min Mean Time
d2n100 2 100 458.35 403.23 430.80 9.18 448.93 443.28 446.10 6.65
d2n500 2 500 868.60 846.50 859.53 192.35 865.00 863.63 864.33 187.33
d5n100 5 100 207.08 172.08 190.58 8.85 229.45 174.68 215.50 7.83
d5n500 5 500 377.28 332.20 357.08 57.90 374.65 357.33 368.03 60.85
d5n1000 5 1000 531.85 467.73 501.05 192.58 534.73 488.08 520.13 202.33
d10n1000 10 1000 277.83 229.28 252.93 84.88 279.90 224.80 262.23 86.10
d10n2000 10 2000 378.65 331.60 355.43 875.45 379.70 335.68 365.88 1098.43
d16n256 16 256 114.63 88.08 101.98 68.60 142.63 75.55 112.75 61.23
d16n512 16 512 142.15 118.70 131.55 78.75 171.95 108.08 144.38 73.60
d16n1024 16 1024 187.98 155.00 171.98 153.88 201.05 150.58 178.10 134.05
d16n2048 16 2048 254.75 209.05 231.55 870.18 261.83 207.18 235.10 860.70
d20n1000 20 1000 151.05 124.20 138.20 192.15 166.33 117.25 145.65 166.93
d20n2000 20 2000 201.43 168.25 184.80 601.60 205.03 168.75 189.13 612.70

Table 4: Continued: Summary for Improved Heuristics

Region Partition+Local Imp Nearest Neighbor+Local Imp
Dataset Depots Nodes Max Min Mean Time Max Min Mean Time
d2n100 2 100 416.70 414.03 415.38 5.73 528.75 313.88 421.30 6.60
d2n500 2 500 873.15 869.18 871.15 152.38 913.35 851.85 882.60 135.03
d5n100 5 100 204.80 187.00 199.40 8.98 235.20 141.35 204.73 7.58
d5n500 5 500 371.88 339.00 359.00 62.18 447.48 261.73 381.85 72.90
d5n1000 5 1000 518.33 499.83 511.43 247.50 858.75 253.08 548.78 321.43
d10n1000 10 1000 270.50 238.30 260.30 165.03 391.08 124.85 282.80 150.03
d10n2000 10 2000 375.50 335.80 363.25 923.58 574.48 173.93 362.43 1206.25
d16n256 16 256 132.33 80.08 111.85 74.18 156.93 23.68 102.60 58.80
d16n512 16 512 168.15 106.93 143.68 75.03 204.70 35.38 136.63 64.08
d16n1024 16 1024 191.68 151.65 176.75 182.20 321.70 57.45 184.38 188.48
d16n2048 16 2048 250.95 207.40 233.63 1062.70 414.53 90.43 238.30 1011.68
d20n1000 20 1000 163.70 118.13 143.43 229.15 244.88 41.20 144.58 242.35
d20n2000 20 2000 219.38 162.65 191.60 543.58 335.48 59.93 209.18 617.83
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motivates different types of algorithms.

6 Conclusion
This paper has presented the first study to min-max MDVRP. We explored some the-

oretical asymptotic properties of the optimal solution, which gave rise to the region parti-
tion heuristic. The region partition idea may have applications beyond the vehicle routing
problem. An LP-based heuristic with global improvement was also presented to solve very
large-sized problems effectively. We concluded by reporting our simulation results.

Many interesting topics remain after this first attempt in min-max MDVRP. For example,
from a theoretical point of view, accurate estimation of the optimal solution in large-scale
problems for the general case is still open. Our theoretical and implemented work can serve
as starting points for further exploration as well.

The techniques used in our algorithms provide advantages over traditional local search
methods. For example, since the LP-based load balancing heuristic does not inherently
require that the points be scattered in a Euclidean space, it can be adapted as a backend
to existing map software to solve VRPs with actual geographic locations. In addition, the
region partition algorithm can be applied to problems outside the scope of VRP. An exact
convex region partition algorithm will be helpful not only for high-quality initial solutions
to MDVRPs, but also for solving a class of network problems with similar structures and a
min-max objective function.
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