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Today’s Talk

• New developments of ADMM-based interior point (ABIP) Method

• Optimal Diagonal Preconditioner and HDSDP

• A Dimension Reduced Trust-Region Method

• A Homogeneous Second-Order Descent Method



ABIP(Lin, Ma, Zhang and Y, 2021)

• An ADMM (Glowinski and Marroco 75, He et al. 12, Monteiro and Svaiter 13) based interior point 

method solver for LP problems 

• Consider homogeneous and self-dual (HSD) LP here!

where 



ABIP – Subproblem

where          is a barrier function 

• Introduce log-barrier function for HSD LP

• Traditional IPM, one uses Newton’s method to solve the KKT system of the above problem, the 

cost is too expensive when problem is large!

• Now we apply ADMM to solve it inexactly

The augmented Lagrangian function: only need to factorize a matrix once or find good diagonal 

preconditioners once



ADMM Based Interior-Point (ABIP)+ Method (Deng et al. 2022) 

• Different strategies/parameters may be significantly different among problems being solved

• An integration strategy based on decision tree is integrated into ABIP

Dimension

Sparsity

Constraint

Coefficient

Null Objective

…

Strategy 1 (restart)

Strategy 2 (scaling)

…

Strategy k (µ reduction)

• A simple feature-to-strategy mapping is derived from a machine learning model

• For generalization limit the number of strategies (2 or 3 types)



ABIP – Restart Strategy I

Instance SC50B (only plot the first two dimension,)

• ABIP tends to induce a spiral trajectory



ABIP – Restart Strategy II

Instance SC50B (only plot the first two dimension, after restart)

• After restart, ABIP moves more aggressively and converges faster (reduce almost 70% ADMM 

iterations) ! 



ABIP – Netlib

• Hybrid 𝜇 : If 𝜇 > 𝜖 use the aggressive strategy, otherwise use another strategy

• ABIP+ decreases both # IPM iterations and # ADMM iterations significantly

• Selected 105 Netlib instances

• ϵ = 10−6, use the direct method, 106 max ADMM iterations



ABIP – MIP2017

• 240 MIP2017 instances

• ϵ = 10−4, presolved by PaPILO, use the direct method, 106 max ADMM iterations

• PDLP (Lu et al. 2021) is a practical first-order method (i.e., the primal-dual hybrid gradient 

(PDHG) method) for linear programming, and it enhences PDHG by a few implementation 

tricks.

• SGM stands for Shifted Geometric Mean, a standard measurement of solvers’ performance



ABIP – PageRank 

• 117 instances, generated from sparse matrix datasets: DIMACS10, Gleich, Newman and SNAP. 

Second order methods in commercial solver fail in most of these instances.

• ϵ = 10−4, use the indirect method, 5000 max ADMM iterations.  

• Examples:



• Generated by Google code

• When # nodes equals to # edges, the generated instance is a staircase matrix. For example,

Staircase matrix instance (# nodes = 10)

410410

ABIP – PageRank

• In this case, ABIP+ is significantly faster than PDLP!



ABIP iteration remains valid for general conic linear program 

● ABIP-subproblem requires to solve a proximal mapping 𝑥+ = argmin 𝜆𝐹 𝑥 +
1

2
𝑥 − 𝑐 2 with respect to the log-barrier 

functions 𝐹 𝑥 in 𝐵(𝑢, 𝑣, 𝜇𝑘)

Positive orthant

● 𝐹 𝑥 = −log 𝑥

● 𝑥 = argmin 𝜆𝐹 𝑥 +
1

2
𝑥 − 𝑐 2

=
𝑐+ 𝑐2+4𝜆

2

● The total IPM and ADMM iteration complexities of ABIP for conic linear program are respectively:

𝑇𝐼𝑃𝑀 = 𝑂 log
1

𝜀
,    𝑇𝐴𝐷𝑀𝑀 = 𝑂(

1

𝜀
log

1

𝜀
)

Positive Semidefinite cone

Second-order cone

● 𝐹 𝒙 = − log 𝑡2 − 𝑥 2 , 𝒙 = (𝑡; 𝑥)
● Can be solved by finding the root of 

quadratic functions

● 𝐹 𝒙 = − log det 𝑥
● Equivalent to solve −𝜆𝑥−1 − 𝑐 + 𝑥 = 0
● Can be solved by eigen decomposition

Positive semidefinite cone

ABIP – Extension to Conice Linear Program



ABIP – Numerical results for large sparse SDPs (Joachim Dahl et al . 2022

• Large sparse SDP problems from Mittelmann's library

• Relative tolerance ϵ = 10−6 used for stopping criteria

(Performance on an AMD Ryzen 9 5900X Linux computer)



Summary

• a general purpose LP solver 

• using ADMM to solve the subproblem

• developed with heuristics and intuitions from various strategies

• equipped with several new computational tricks

• Smart dual updates?

ABIP is 
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Interior point method for SDPs

SDP is solvable in polynomial time using the interior point methods

• Take Newton step towards the perturbed KKT system

• Efficient numerical solvers have been developed

COPT, Mosek, SDPT3, SDPA, DSDP…

• Most IPM solvers adopt primal-dual path-following IPMs except DSDP

DSDP (Dual-scaling SDP) implements a dual potential reduction method



Homogeneous dual-scaling algorithm

From arbitrary starting dual solution (𝑦, 𝑆 ≻ 0, 𝜏 > 0) with dual 

residual R

New strategies are tailored 

for the method 

• Primal iterations can still be fully eliminated

• inherits sparsity pattern of data

Less memory and since 𝑋 is generally dense

• Infeasibility or an early feasible solution can be detected via the 

embedding 



Computational aspects for HDSDP Solver

To enhance performance, HDSDP (written in ANSI C) is equipped with

• Pre-solving that detects special structure and 
dependency

• Line-searches over barrier to balance optimality & 
centrality

• Heuristics to update the barrier parameter 𝜇

• Corrector strategy to reuse the Schur matrix 

• A complete dual-scaling algorithm from DSDP5.8

• More delicate strategies for the Schur system



Computational results

• HDSDP is tuned and tested for many benchmark datasets

• Good performance on problems with both low-rank structure and sparsity

• Solve around 70/75 Mittelmann’s benchmark problems

• Solve 90/92 SDPLIB problems

(Results run on an intel i11700K machine)

Selected Mittelmann’s benchmark problems where HDSDP is fastest (all the constraints are rank-one)



Optimal Diagonal Pre-Conditioner [QGHYZ 20]

Given matrix 𝑀 = 𝑋⊤𝑋 ≻ 0, iterative method (e.g., CG) is often applied to solve

𝑀𝑥 = 𝑏

• Convergence of iterative methods depends on the condition number 𝜅(𝑀)

• Good performance needs pre-conditioning and we solve 𝑃−1/2𝑀𝑃−1/2𝑥′ = 𝑏

A good pre-conditioner reduces 𝜅(𝑃−1/2𝑀𝑃−1/2)

• Diagonal 𝑃 = 𝐷 is called diagonal pre-conditioner

Is it possible to find optimal 𝐷∗ and 𝐸∗ ? SDP works!

More generally, we wish to find 𝐷 ( or 𝐸 ) such that 𝜅(𝐷 ⋅ 𝑋 ⋅ 𝐸) is minimized ?



Application: Optimal Diagonal Pre-Conditioner

• Finding the optimal diagonal pre-conditioner is an SDP

• Two SDP blocks and sparse coefficient matrices

• Trivial dual interior-feasible solution

• An ideal formulation for dual SDP methods 𝐷 = ∑𝑑𝑖𝑒𝑖𝑒𝑖
𝑇

What about two-sided ?



Two-Sided Pre-Conditioner 

• Common in practice and popular heuristics exist 

e.g. Ruiz-scaling, matrix equilibration & balancing

• Not directly solvable using SDP

• Can be solved by iteratively fixing 𝐷1(𝐷2) and optimizing the other side

Solving a sequence of SDPs

• Answer a question: how far can diagonal pre-conditioners go



Computational Results: Solving for the Optimal Pre-Conditioner

• Perfectly in the dual form 

• Trivial dual feasible interior point solution 

• 1 is an upper-bound for the optimal objective value

SDP from optimal drag pre-conditioning problem HDSDP

• A dual SDP algorithm (successor of DSDP5.8 by Benson)

• Support initial dual solution

• Customization for the diagonal pre-conditioner



Computational results: Randomized preconditioner

• Many matrices result from statistical datasets

• 𝑀 = 𝑋𝑇𝑋 estimates the covariance matrix

• It suffices to use a few samples to approximate

How few? As few as 

𝑶(𝐥𝐨𝐠 𝐬𝐚𝐦𝐩𝐥𝐞 )!

• It generally takes 1% to 5% of the samples to approximate well

• Scales well with dimension and saves much time for matrix-matrix multiplication

Experiment over regression datasets shows that 



Computational Results: Optimal Diagonal Pre-Conditioner

• Test over 491 Suite Sparse Matrices of fewer than 1000 columns

• LIBSVM datasets

• Test over 491 Suite Sparse Matrices of fewer than 1000 columns

• LIBSVM datasets

Distribution of condition number reduction

(Factor of improvement)



Summary

• a general purpose SDP solver 

• using dual-scaling and simplified HSD

• developed with heuristics and intuitions from DSDP

• equipped with several new computational tricks

• more iterative methods for solving subproblems?

HDSDP is 
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min 𝑓(𝑥), 𝑥 ∈ 𝑋 𝑖𝑛 ℝ𝑛,

• where  𝑓 is nonconvex and twice-differentiable,

𝑔𝑘 = 𝛻𝑓(𝑥𝑘), 𝐻𝑘 = 𝛻2𝑓(𝑥𝑘)

• Goal: find 𝑥𝑘 such that:

∥ 𝛻𝑓(𝑥𝑘) ∥≤ 𝜖 (primary, first-order condition)

𝜆𝑚𝑖𝑛(𝐻𝑘) ≥ − 𝜖 (in active subspace, secondary, second-order condition) 

• For the ball-constrained nonconvex QP: min 𝑐𝑇𝑥 + 0.5𝑥𝑇𝑄𝑥 𝑠. 𝑡. ∥ 𝑥 ∥ 2 ≤1   

O(loglog(𝜖-1)); see Y (1989,93), Vavasis&Zippel (1990)

• For nonconvex QP with polyhedral constraints: O(𝜖-1); see Y (1998), Vavasis

(2001)

Early Complexity Analyses for Nonconvex Optimization



Standard methods for general nonconvex optimization I

First-order Method (FOM): Gradient-Type Methods

• Assume 𝑓 has 𝐿-Lipschitz cont. gradient 

• Global convergence by, e.g., linear-search (LS)

• No guarantee for the second-order condition

• Worst-case complexity, 𝑂 𝜖−2 ; see the textbook by Nesterov (2004)

Each iteration requires O(n2) operations



Second-order Method (SOM): Hessian-Type Methods

• Assume 𝑓 has 𝑀-Lipschitz cont. Hessian 

• Global convergence by, e.g., linear-search (LS), Trust-region (TR), or 

Cubic Regularization 

• Convergence to second-order points

• No better than 𝑂 𝜖−2 , for traditional methods (steepest descent and 

Newton); according to Cartis et al. (2010) .

Each iteration requires O(n3) operations

Standard methods for general nonconvex optimization II



Variants of SOM

• Trust-region with the fixed-radius strategy, 𝑂(𝜖−3/2), see the lecture notes 

by Y since 2005

• Cubic regularization, 𝑂(𝜖−3/2), see Nesterov and Polyak (2006), Cartis, 

Gould, and Toint (2011)

• A new trust-region framework, 𝑂(𝜖−3/2), Curtis, Robinson, and Samadi

(2017)

With “slight” modification, complexity of SOM reduces from 𝑂(𝜖−2) to 𝑂(𝜖−3/2)

Analyses of SOM for general nonconvex optimization since 2000



• Two-directional FOM, with 𝑑𝑘 being the momentum direction (𝑥𝑘 − 𝑥𝑘−1)

𝑥𝑘+1= 𝑥𝑘 − 𝛼𝑘
1𝛻𝑓(𝑥𝑘) + 𝛼𝑘

2𝑑𝑘 = 𝑥𝑘+ 𝑑𝑘+1

where step-sizes are constructed; including CG, PT, AGD, Polyak, ADAM and many others. 

• In SOM, a method typically minimizes a full dimensional quadratic Taylor expansion to obtain 

direction vector 𝑑𝑘+1. For example, one TR step solves for 𝑑𝑘+1 from

min𝑑 𝑔𝑘
𝑇𝑑 + 0.5𝑑𝑇𝐻𝑘𝑑 𝑠. 𝑡. ||d||2 ≤ Δ𝑘

where Δ𝑘 is the trust-region radius.

• DRSOM: Dimension Reduced Second-Order Method

Motivation: using few directions in SOM 

Motivation from multi-directional FOM



• The DRSOM in general uses m-independent directions

𝑑(α):= 𝐷kα , 𝐷k ∊ Rnm, α∊ Rm

• Plug the expression into the full-dimension TR quadratic minimization problem, 

we minimize a  m-dimension trust-region subproblem to decide “m stepsizes”:

min 𝑚𝑘
α α ≔ 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘 ≤ Δ𝑘

𝐺𝑘= 𝐷𝑘
𝑇𝐷𝑘, 𝑄𝑘 = 𝐷𝑘

𝑇𝐻𝑘𝐷𝑘, 𝑐𝑘 = 𝑔𝑘
𝑇𝐷k

How to choose Dk? How great would m be? Rank of  Hk?

(Randomized) rank reduction of a symmetric matrix to log(n) (So et al. 08)?

DRSOM I



• In following, as an example, DRSOM adopts two FOM directions

𝑑 = −𝛼1 𝛻𝑓 𝑥𝑘 + 𝛼2 𝑑𝑘 ∶= 𝑑(α)

where 𝑔𝑘 = 𝛻𝑓 𝑥𝑘 , 𝐻𝑘 = 𝛻2𝑓 𝑥𝑘 , 𝑑𝑘 = 𝑥𝑘 − 𝑥𝑘−1

• Then we minimize a  2-D trust-region problem to decide “two step-sizes”:

min 𝑚𝑘
α α ≔ 𝑓 𝑥𝑘 + 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘 ≤ Δ𝑘

𝐺𝑘 =
𝑔𝑘
𝑇𝑔𝑘 −𝑔𝑘

𝑇𝑑𝑘
−𝑔𝑘

𝑇𝑑𝑘 𝑑𝑘
𝑇𝑑𝑘

, 𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘
−𝑔𝑘

𝑇𝐻𝑘𝑑𝑘 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

DRSOM II



DRSOM III

DRSOM can be seen as:

• “Adaptive” Accelerated Gradient Method (Polyak’s momentum 60)

• A second-order method minimizing quadratic model in the reduced 2-D 

𝑚𝑘(𝑑) = 𝑓(𝑥𝑘) + 𝛻𝑓(𝑥𝑘)
𝑇𝑑 +

1

2
𝑑𝑇𝛻2𝑓(𝑥𝑘)𝑑, 𝑑 ∈ 𝗌𝗉𝖺𝗇{−𝑔𝑘, 𝑑𝑘}

compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method

𝑑 ∈ 𝗌𝗉𝖺𝗇{𝑔𝑘 , [𝐻(𝑥𝑘)]
−1𝑔𝑘} (e.g., Powell 70)

• A conjugate direction method for convex optimization exploring the Krylov

Subspace (e.g., Yuan&Stoer 95)

• For convex quadratic programming with no radius limit, terminates in n steps



Computing Hessian-Vector Product in DRSOM is the Key

In the DRSOM with two directions:

𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘
−𝑔𝑘

𝑇𝐻𝑘𝑑𝑘 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

How to cheaply obtain Q? Compute  𝐻𝑘𝑔𝑘 , 𝐻𝑘𝑑𝑘 first.

• Finite difference:

𝐻𝑘 ⋅ 𝑣 ≈
1

𝜖
𝑔(𝑥𝑘 + 𝜖 ⋅ 𝑣) − 𝑔𝑘 ,

• Analytic approach to fit modern automatic differentiation,

𝐻𝑘𝑔𝑘 = 𝛻(
1

2
𝑔𝑘
𝑇𝑔𝑘), 𝐻𝑘𝑑𝑘 = 𝛻(𝑑𝑘

𝑇𝑔𝑘),

• or use Hessian if readily available !



DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n 

steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, 

DRSOM terminates in 𝑂(𝜖  −3 2) iterations.  Furthermore, the iterate 𝑥𝑘 satisfies the first-

order condition, and the Hessian is positive semi-definite in the subspace spanned by the 

gradient and momentum.

Assumption. (a)  𝑓 has Lipschitz continuous Hessian. (b) DRSOM iterates with a fixed-

radius strategy: Δ𝑘 = 𝜖/𝛽( c) If the Lagrangian multiplier 𝝀𝒌 < 𝝐 , assume 

∥ (𝑯𝒌 −  𝑯𝒌)𝒅𝒌+𝟏 ∥≤ 𝑪 ∥ 𝒅𝒌+𝟏 ∥
𝟐 (Cartis et al.), where  𝐻𝑘 is the projected Hessian in the 

subspace (commonly adopted for approximate Hessian)

Theorem 3. (Local convergence rate) If the iterate 𝑥𝑘 converges to a strict local optimum 

𝑥∗ such that 𝐻(𝑥∗) ≻ 0, and if Assumption (c) is satisfied as soon as 𝜆𝑘 ≤ 𝐶𝜆 ∥ 𝑑𝑘+1 ∥, 
then DRSOM has a local superlinear (quadratic) speed of convergence, namely: ∥ 𝑥𝑘+1
− 𝑥∗ ∥= 𝑂(∥ 𝑥𝑘 − 𝑥∗ ∥2)



Sensor Network Location (SNL)

• Consider Sensor Network Location (SNL)

where       is a fixed parameter known as the radio range. The SNL problem considers 

the    following QCQP feasibility problem,

• We can solve SNL by the nonconvex nonlinear least square (NLS) problem



Sensor Network Location (SNL)

• Graphical results using SDP relaxation to initialize the NLS

• n = 80, m = 5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05

• Both Gradient Descent and DRSOM can find good solutions !



Sensor Network Location (SNL)

• DRSOM can still converge to optimal solutions

• Graphical results without SDP relaxation



Neural Networks and Deep Learning 

To use DRSOM in machine learning problems

• We apply the mini-batch strategy to a vanilla DRSOM

• Use Automatic Differentiation to compute gradients

• Train ResNet18 Model with CIFAR 10

• Set Adam with initial learning rate 1e-3



Neural Networks and Deep Learning 

Training results for ResNet18 with DRSOM and Adam

Test results for ResNet18 with DRSOM and Adam

Pros

• DRSOM has rapid convergence 

(30 epochs)

• DRSOM needs little tuning

Cons

• DRSOM may overfit the models

• Needs 4~5x time than Adam to 

run same number of epoch 

Good potential to be a standard 

optimizer for deep learning!



• TRPO attempts to optimize a surrogate function (based on the current iterate) of the 
objective function while keep a KL divergence constraint

• In practice, it linearizes the surrogate function, quadratizes the KL constraint, and obtain

where 𝐹𝑘 is the Hessian of the KL divergence. 

DRSOM for TRPO I (Xue et al. SHUFE)



DRSOM/TRPO Preliminary Results I

• Although we only maintain the linear approximation of the surrogate function, surprisingly the 

algorithm works well in some RL environments



DRSOM/TRPO Preliminary Results II

• Sometimes even better than TRPO ! 



DRSOM for LP Potential Reduction (Gao et al. SHUFE)

𝑚𝑖𝑛
𝑥

1

2
‖𝐴𝑥‖2 =: 𝑓 𝑥

subject to 𝑒⊤𝑥 = 1
𝑥 ≥ 0

We consider a simplex-constrained QP model We wish to solve a standard LP (and its dual)

𝑚𝑖𝑛
𝑥

𝑐⊤𝑥

subject to 𝐴𝑥 = 𝑏
𝑥 ≥ 0

𝑚𝑎𝑥
𝑦,𝑠

𝑏⊤𝑦

subject to 𝐴⊤𝑦 + 𝑠 = 𝑐
𝑠 ≥ 0

• The homogeneous QP seems so restrictive!

• How to solve much more general LPs?

𝐴𝑥 − 𝑏𝜏 = 0
−𝐴⊤𝑦 − 𝑠 + 𝑐𝜏 = 0

𝑏⊤𝑦 − 𝑐⊤𝑥 − 𝜅 = 0

𝑒𝑛
⊤𝑥 + 𝑒𝑛

⊤𝑠 + 𝜅 + 𝜏 = 1

The self-dual embedding builds a bridge

Then we define the (nonconvex) potential function and apply DRSOM to it

𝜙 𝑥 := 𝜌log(𝑓 𝑥 ) − ∑
𝑖=1

𝑛

log 𝑥𝑖

𝛻𝜙 𝑥 =
𝜌𝛻𝑓 𝑥

𝑓 𝑥
− 𝑋−1𝑒

𝛻2𝜙 𝑥

= −
𝜌𝛻𝑓 𝑥 𝛻𝑓 𝑥 ⊤

𝑓 𝑥 2
+ 𝜌

𝐴⊤𝐴

𝑓 𝑥
+ 𝑋−2

Combined with scaled gradient(Hessian) projection, the method solves LPs



DR-Potential Reduction: Preliminary Results

One feature of the DR-Potential reduction is the use of negative curvature of

𝛻2𝜙 𝑥 = −
𝜌𝛻𝑓 𝑥 𝛻𝑓 𝑥 ⊤

𝑓 𝑥 2
+ 𝜌

𝐴⊤𝐴

𝑓 𝑥
+ 𝑋−2

• Computable using Lanczos iteration

• Getting LPs to high accuracy 10−6 ∼ 10−8 if negative curvature is efficiently computed

• Now solving small and medium Netlib

instances in 10 seconds

within 1000 iterations

• In MATLAB and getting transferred into C 

for acceleration



DRSOM for Riemannian Optimization (Tang et al. NUS)



Max-CUT SDP



1D-Kohn-Sham Equation
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A Descent Direction Using the Homogenized Quadratic Model I

• -gk is the first-order steepest descent direction but ignores Hessian; the direction of Hk-

negative curvature 𝑣 meets Assumption (c) and also enables 𝑂 𝜖1.5 decrease if

𝑅 𝐻𝑘 , 𝑣 = 𝑣𝑇𝐻𝑘𝑣/ 𝑣 2 < − 𝜖,

but such direction does not exist if it becomes nearly convex…

• Could we construct a direction integrating both?

Answer: Use the homogenized quadratic model!

• Big Question: How to drop Assumption (c) in DRSOM analyses?

Recall the classical trust-region method minimizes the quadratic model



A Descent Direction Using the Homogenized Quadratic Model II

• Using the homogenization trick by lifting with extra scalar 𝑡:

• Find a good direction 𝜉 = 𝜉0/𝑡 (if t = 0 then set t=1) by the leftmost 

eigenvector:

min
| 𝜉0;𝑡 |≤1

𝜓𝑘 𝜉0, 𝑡; 𝛿

• Accessible at the cost of 𝑂 𝜖−1/4 via the randomized Lanczos method.

• The homogeneous model is equivalent to 𝑚𝑘 up to scaling:

𝜓𝑘 𝜉0, 𝑡; 𝛿 = 𝑡2 ⋅ 𝑚𝑘 ξ0/𝑡 − 𝛿



This is the Classical Homogenization Trick in QCQP via SDP

• For inhomogeneous QP (and QCQP):

• Used with SDP relaxation:

• Homogenized QCQP and SDP relaxation enables strong performance 

and theoretical analysis, and it guarantees a rank-one solution if m=1.

* Rojas and Sorensen 2001 



The Descent Direction Using the Homogenized Quadratic Model

• Define the following parametrized ( 𝛿 ) homogenized quadratic model at 𝑥𝑘:

• The “un-homogenized vector” 𝜉 = 𝜉0/𝑡 can be found by the leftmost 

eigenvalue computation and scaling (if t = 0 then set t=1) ;

• Lemma 1 (strict negative curvature) : if 𝑔𝑘 ≠ 0,𝐻𝑘 ≠ 0, let 𝜆1 be the 

leftmost eigenvalue of  
𝐻𝑘 𝑔𝑘
𝑔𝑘

𝑇 −𝛿
, then 𝜆1 ≤ −𝛿.

• The motivates us to use 𝜉 as a second-order descent direction 

resulting a single-looped (easy-to-implement) method 



Theoretical Guarantees of HSODM

• Consider use the second-order homogenized direction, and the length 

of each step η𝜉 is fixed: η𝜉 ≤ Δ𝑘 =
2 𝜖

𝑀
where 𝑓(𝑥) has 𝐿-Lipschitz 

gradient and 𝑀-Lipschitz Hessian. 

• Theorem 1 (Global convergence rate) : if 𝑓(𝑥) satisfies the Lipchitz 

Assumption and 𝛿 = √𝜀 , the iterate moves along homogeneous vector 

𝜉: 𝑥𝑘+1= 𝑥𝑘 + η𝑘𝜉, then, if we choose η𝑘 = Δ𝑘/ 𝜉 , and terminate at 𝜉

< Δ𝑘, then algorithm has 𝑂(𝜖−3/2) iteration complexity. Furthermore, 

𝑥𝑘+1 satisfies approximate first-order and second-order conditions.



Global Convergence Rate: Outline of Analysis

* The eigenvector does not change, and we do not have to solve 𝜉 again. 

• A concise analysis using fixed radius ∆

Let 𝑥𝑘+1= 𝑥𝑘 + η𝜉, 𝑅 𝐻𝑘 , 𝜉 = 𝜉𝑇𝐻𝑘𝜉/ 𝜉 2, 𝜉 = 𝜉0/𝑡

o (sufficient decrease in large step) If 𝜉 ≥ ∆, we choose η = ∆ / 𝜉

 𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘 ≤ −
𝛿∆2

2
+

𝑀

6
𝛥3, regardless of 𝑡 = 0 or not

 𝛿 must be some greater than O(√𝜖) to have O 𝜖
3

2 decrease

o (small step means convergence) Otherwise 𝜉 < ∆, then we choose 

step-size  η = 1 and 

 𝑔𝑘+1 ≤ 4 𝐿 + 𝛿 2𝛥3 +
𝑀

2
𝛥2 + 2𝐿𝛿 + 2𝛿2 𝛥

 𝛿 must be some less than O(√𝜖) and converge



Theoretical Guarantees of HSODM (cont.)

• Theorem 2 (Local convergence rate): If the iterate 𝑥𝑘 of HSODM converges 

to a strict local optimum 𝑥∗ such that 𝐻(𝑥∗) ≻ 0 ,and then 𝜂𝑘 = 1 if 𝑘 is

sufficiently large. If we do not terminate HSODM and set 𝛿 = 0, then HSODM

has a local superlinear (quadratic) speed of convergence, namely: ∥ 𝑥𝑘+1
− 𝑥∗ ∥= 𝑂(∥ 𝑥𝑘 − 𝑥∗ ∥2)

• The local convergence property of HSODM is very similar to classical trust-

region method when the iterate becomes unconstrained Newton steps
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Preliminary results: HSODM and DRSOM + HSODM

An example of L2-Lp

• GD and LBFGS both use a 

Line-search (Hager-Zhang)

• DRSOM uses 2-D subspace

• HSODM and DRSOM + 

HSODM are much better!

• DRSOM can also benefit 

from the homogenized 

system
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The Effect of Warm-Starting the Eigenvector

An example of warm 

starting

• HSODM(warm) uses the 

last eigenvector to warm 

start the Lanczos

method

• HSODM(warm) always 

needs less subproblem 

iter than HSODM(cold)



Ongoing Research and Future Directions on DRSOM

• Are there other alternatives to remove Assumption c) in DRSOM analyses?

• Low-rank approximation of the homogenized matrix 
𝐻𝑘 𝑔𝑘
𝑔𝑘

𝑇 𝟎
(+µ●I, that is, adding 

sufficiently large scalar µ so that it is positive definite if necessary) to make the 

leftmost eigenvector computing easier (Randomized rank reduction of a symmetric 

matrix to log(n), So et al. 08) and “Hot-Start” eigenvector computing by Power 

Methods (linear convergence of Liu et al. 2017)?

• Indefinite and Randomized Hessian rank-one updating via BFGS/SR1 

• Dimension Reduced Non-Smooth/Semi-Smooth Newton

Takeaway: Second-Order Information matters and better to integrate FOM and SOM!

• THANK YOU


