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The topics are:

■ Population Growth and the Logistic Equation.
■ Linearization and Stability Analysis in 1D.
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■ Limitations of Linearization.

Philosophy: Reality demands non-linear terms, generating
effects impossible to model with purely linear systems; there’s
a fidelity/analyzability tradeoff that can often (but not always)
be avoided by linearization analysis.

Caveat: I don’t know too much about non-linear systems.
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Now, imagine the creature has one baby per timestep.
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Modeling Population Growth

Let’s start with one creature:

N(0) = 1.

Now, imagine the creature has one baby per timestep.

N(1) = 2.
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Modeling Population Growth

Let’s start with one creature:

N(0) = 1.

Now, imagine the creature has one baby per timestep.

N(1) = 2.

And then each of these two has one baby, so N(2) = 4;
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Now, imagine the creature has one baby per timestep.

N(1) = 2.

And then each of these two has one baby, so N(2) = 4; and
N(3) = 8, etc...
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Modeling Population Growth

Let’s start with one creature:

N(0) = 1.

Now, imagine the creature has one baby per timestep.

N(1) = 2.

And then each of these two has one baby, so N(2) = 4; and
N(3) = 8, etc... It’s a difference equation, Nk = 2Nk−1, with
solution

N(k) = 2kN(0).
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Modeling Population Growth

Let’s start with one creature:

N(0) = 1.

Now, imagine the creature has one baby per timestep.

N(1) = 2.

And then each of these two has one baby, so N(2) = 4; and
N(3) = 8, etc... It’s a difference equation, Nk = 2Nk−1, with
solution

N(k) = 2kN(0).

Problem 1 If at each instant any creature has rdt babies, what is the right
ODE describing the population growth?
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Let’s start with one creature:

N(0) = 1.

Now, imagine the creature has one baby per timestep.

N(1) = 2.

And then each of these two has one baby, so N(2) = 4; and
N(3) = 8, etc... It’s a difference equation, Nk = 2Nk−1, with
solution

N(k) = 2kN(0).

Problem 1 If at each instant any creature has rdt babies, what is the right
ODE describing the population growth?

Answer: dN = rNdt, whose solution is?
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Modeling Population Growth

Let’s start with one creature:

N(0) = 1.

Now, imagine the creature has one baby per timestep.

N(1) = 2.

And then each of these two has one baby, so N(2) = 4; and
N(3) = 8, etc... It’s a difference equation, Nk = 2Nk−1, with
solution

N(k) = 2kN(0).

Problem 1 If at each instant any creature has rdt babies, what is the right
ODE describing the population growth?

Answer: dN = rNdt, whose solution is?
N(t) = ertN(0).
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Modeling Population Growth

Question: Why is exponential growth unrealistic?
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Modeling Population Growth

Question: Why is exponential growth unrealistic? Resource
limitation: you can’t grow forever with finite amount of food,
water, space, etc...
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water, space, etc...
Need a new model. Must produce “resource response:” fast
growth when below resource level, slows as environmental
capacity becomes an important limitation.
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Question: Why is exponential growth unrealistic? Resource
limitation: you can’t grow forever with finite amount of food,
water, space, etc...
Need a new model. Must produce “resource response:” fast
growth when below resource level, slows as environmental
capacity becomes an important limitation.
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Modeling Population Growth

Question: Why is exponential growth unrealistic? Resource
limitation: you can’t grow forever with finite amount of food,
water, space, etc...
Need a new model. Must produce “resource response:” fast
growth when below resource level, slows as environmental
capacity becomes an important limitation.

Capacity

Fast 
Growth

Slow 
Growth

Environmental

Pop
size

time

Limitation
Appears

Question: What’s the BIG problem here?
Answer: Lecture 2 analysis ⇒ NO linear system can model
resource response.
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can we multiply by something that builds in environmental
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Suppose K is a measure of capacity, in creature-units. Then

1 −
N

K

is positive when N < K and negative when N > K.
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If we start with
Ṅ = rN

can we multiply by something that builds in environmental
capacity?

Suppose K is a measure of capacity, in creature-units. Then

1 −
N

K

is positive when N < K and negative when N > K.
This non-linear ODE:

Ṅ = rN(1 −
N

K
)

has the properties we want.
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Ṅ = rN

can we multiply by something that builds in environmental
capacity?

Suppose K is a measure of capacity, in creature-units. Then

1 −
N

K

is positive when N < K and negative when N > K.
This non-linear ODE:

Ṅ = rN(1 −
N

K
)

has the properties we want. If
■ N is too big, > K, the Ṅ is negative, the population shrinks.
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Modeling Population Growth

If we start with
Ṅ = rN

can we multiply by something that builds in environmental
capacity?

Suppose K is a measure of capacity, in creature-units. Then

1 −
N

K

is positive when N < K and negative when N > K.
This non-linear ODE:

Ṅ = rN(1 −
N

K
)

has the properties we want. If
■ N is too big, > K, the Ṅ is negative, the population shrinks.

■ If N � K, Ṅ ∼ rN , with fast growth as we wanted.
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is known as the “Logistic equation" and K is called the
“carrying capacity” of the environment.
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Ṅ = rN(1 −
N

K
) = rN −

r

K
N2

is known as the “Logistic equation" and K is called the
“carrying capacity” of the environment.

It is a non-linear first-order differential equation. Can be
solved analytically a couple of ways.
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is known as the “Logistic equation" and K is called the
“carrying capacity” of the environment.

It is a non-linear first-order differential equation. Can be
solved analytically a couple of ways.

dN

N(1 − N/K)
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N(1 − N/K)
= r
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Ṅ = rN(1 −
N

K
) = rN −

r

K
N2

is known as the “Logistic equation" and K is called the
“carrying capacity” of the environment.

It is a non-linear first-order differential equation. Can be
solved analytically a couple of ways.

dN

N(1 − N/K)
= rdt

⇒

∫

dN

N(1 − N/K)
= r

∫

dt = rt.

Problem 2 What is the easiest strategy to evaluate the integral on the LHS?
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N(1 − N/K)
=

1

N
+

1

K − N
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.

Hence
ln(N) − ln(K − N) = C′′ + rt

so
N
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= C′ert
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N(t) =
K
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.
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Answer: Partial fractions.

1

N(1 − N/K)
=

1

N
+

1

K − N
.

Hence
ln(N) − ln(K − N) = C′′ + rt

so
N

K − N
= C′ert

and therefore

N(t) =
K

1 + Cert
.

Problem 3 Solve for C as a function of N(0).
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Answer:

C =
K

N(0)
− 1.

So

N(t) =
KN(0)

N(0) + (K − N(0))e−rt
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− 1.

So

N(t) =
KN(0)

N(0) + (K − N(0))e−rt
.

This makes good sense. Why?
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Solution method illustrates “separable" differential equations,
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This makes good sense. Why?

Solution method illustrates “separable" differential equations,
those re-arrangeable to the form
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So
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KN(0)

N(0) + (K − N(0))e−rt
.

This makes good sense. Why?

Solution method illustrates “separable" differential equations,
those re-arrangeable to the form

d(g(x)) = d(h(t)) (1)
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C =
K

N(0)
− 1.

So

N(t) =
KN(0)

N(0) + (K − N(0))e−rt
.

This makes good sense. Why?

Solution method illustrates “separable" differential equations,
those re-arrangeable to the form

d(g(x)) = d(h(t)) (1)

⇒ g(x) = h(t) + C.
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Answer:

C =
K

N(0)
− 1.

So

N(t) =
KN(0)

N(0) + (K − N(0))e−rt
.

This makes good sense. Why?

Solution method illustrates “separable" differential equations,
those re-arrangeable to the form

d(g(x)) = d(h(t)) (1)

⇒ g(x) = h(t) + C.

“Integrating factors" are multipliers you add in to get it to form
1, and remove after.
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Problem 4 What is the new differential equation in M?

Answer: dM = rK − rM.



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 9/40

Modeling Population Growth

Let’s solve it another way.

Let M = 1
N

.
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Answer: dM = rK − rM. And what kind of equation is this?
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Let’s solve it another way.

Let M = 1
N

.

Problem 4 What is the new differential equation in M?

Answer: dM = rK − rM. And what kind of equation is this?
Linear inhomogenous.
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Let’s solve it another way.

Let M = 1
N

.

Problem 4 What is the new differential equation in M?

Answer: dM = rK − rM. And what kind of equation is this?
Linear inhomogenous. Solve it!
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Modeling Population Growth

Let’s solve it another way.

Let M = 1
N

.

Problem 4 What is the new differential equation in M?

Answer: dM = rK − rM. And what kind of equation is this?
Linear inhomogenous. Solve it!

Answer:

M =
1

K
− Ce−rt

whence

N =
K

1 − CKe−rt
.
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Modeling Population Growth

Let’s solve it another way.

Let M = 1
N

.

Problem 4 What is the new differential equation in M?

Answer: dM = rK − rM. And what kind of equation is this?
Linear inhomogenous. Solve it!

Answer:

M =
1

K
− Ce−rt

whence

N =
K

1 − CKe−rt
.

Illustrates another method: substitution.
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Recall solution

N(t) =
KN(0)

N(0) + (K − N(0))e−rt
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Answer: limt→∞ N(t) = K, for all N(0) ≥ 0 except N(0) = 0
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Answer: limt→∞ N(t) = K, for all N(0) ≥ 0 except N(0) = 0
itself; ∴ fixed points = 0, K.

Problem 6 Classify the stability of the two fixed points based on trajectories.
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Problem 6 Classify the stability of the two fixed points based on trajectories.

Answer: 0 is unstable, K is stable.
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Recall solution

N(t) =
KN(0)

N(0) + (K − N(0))e−rt
.

Problem 5 What is the behavior of N as t → ∞? What are the fixed
points?

Answer: limt→∞ N(t) = K, for all N(0) ≥ 0 except N(0) = 0
itself; ∴ fixed points = 0, K.

Problem 6 Classify the stability of the two fixed points based on trajectories.

Answer: 0 is unstable, K is stable.

Strategy: solve ODE, find asymptotes, fixed points, stability
from trajectory behavior.
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Recall solution

N(t) =
KN(0)

N(0) + (K − N(0))e−rt
.

Problem 5 What is the behavior of N as t → ∞? What are the fixed
points?

Answer: limt→∞ N(t) = K, for all N(0) ≥ 0 except N(0) = 0
itself; ∴ fixed points = 0, K.

Problem 6 Classify the stability of the two fixed points based on trajectories.

Answer: 0 is unstable, K is stable.

Strategy: solve ODE, find asymptotes, fixed points, stability
from trajectory behavior. Why is this a bad strategy?
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ẋ = sin(x).



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 11/40

Stability Analysis

Consider the ODE system
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ẋ = sin(x).

dt =
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sin(x)
= csc(x)dx

whence

t =

∫

csc(x)dx + C.
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Stability Analysis

Consider the ODE system

ẋ = sin(x).

dt =
dx

sin(x)
= csc(x)dx

whence

t =

∫

csc(x)dx + C.

Question: Does anyone know this integral off the top of their
head?
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whence

t =

∫
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head? It turns out:

t = −ln[|csc(x) + cot(x)|] + C

so



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 11/40

Stability Analysis

Consider the ODE system

ẋ = sin(x).

dt =
dx

sin(x)
= csc(x)dx

whence

t =

∫

csc(x)dx + C.

Question: Does anyone know this integral off the top of their
head? It turns out:

t = −ln[|csc(x) + cot(x)|] + C

so

t = ln

[
∣

∣

∣

∣
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∣

∣

∣

∣
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sin(x)
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whence

t =

∫

csc(x)dx + C.

Question: Does anyone know this integral off the top of their
head? It turns out:
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so
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. Ugh.
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Not only does it have ratios of weird trigonometric functions, it’s
implicit in x!

Useless (unless you’re von Neumann).
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Stability Analysis

Not only does it have ratios of weird trigonometric functions, it’s
implicit in x!

Useless (unless you’re von Neumann).

Now consider:
ẍ = −x − µ(x2 − 1)ẋ,

a non-linearly damped harmonic oscillator.
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Stability Analysis

Not only does it have ratios of weird trigonometric functions, it’s
implicit in x!

Useless (unless you’re von Neumann).

Now consider:
ẍ = −x − µ(x2 − 1)ẋ,

a non-linearly damped harmonic oscillator. Analytic solutions
to this equation – the “van der Pol” oscillator – are unknown (or
really hard).



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 12/40

Stability Analysis

Not only does it have ratios of weird trigonometric functions, it’s
implicit in x!

Useless (unless you’re von Neumann).

Now consider:
ẍ = −x − µ(x2 − 1)ẋ,

a non-linearly damped harmonic oscillator. Analytic solutions
to this equation – the “van der Pol” oscillator – are unknown (or
really hard).

So our first strategy was bad for two reasons:
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Stability Analysis

Not only does it have ratios of weird trigonometric functions, it’s
implicit in x!

Useless (unless you’re von Neumann).

Now consider:
ẍ = −x − µ(x2 − 1)ẋ,

a non-linearly damped harmonic oscillator. Analytic solutions
to this equation – the “van der Pol” oscillator – are unknown (or
really hard).

So our first strategy was bad for two reasons:
■ Even when ODE is solvable, the answer can be opaque.
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Stability Analysis

Not only does it have ratios of weird trigonometric functions, it’s
implicit in x!

Useless (unless you’re von Neumann).

Now consider:
ẍ = −x − µ(x2 − 1)ẋ,

a non-linearly damped harmonic oscillator. Analytic solutions
to this equation – the “van der Pol” oscillator – are unknown (or
really hard).

So our first strategy was bad for two reasons:
■ Even when ODE is solvable, the answer can be opaque.
■ Often ODE is unsolvable.
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Stability Analysis

Problem 7 What are the fixed points points of the system

Ṅ = rN

(

1 −
N

K

)

?
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Stability Analysis

Problem 7 What are the fixed points points of the system

Ṅ = rN

(

1 −
N

K

)

?

Answer: Ṅ = 0 ⇒ rN (1 − N/K) = 0 ⇒ N = 0, N = K.
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Stability Analysis

Problem 7 What are the fixed points points of the system

Ṅ = rN

(

1 −
N

K

)

?

Answer: Ṅ = 0 ⇒ rN (1 − N/K) = 0 ⇒ N = 0, N = K.

For stability at N = 0, consider
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Stability Analysis

Problem 7 What are the fixed points points of the system

Ṅ = rN

(

1 −
N

K

)

?

Answer: Ṅ = 0 ⇒ rN (1 − N/K) = 0 ⇒ N = 0, N = K.

For stability at N = 0, consider

Ṅ = rN − (r/K)N2.
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Stability Analysis

Problem 7 What are the fixed points points of the system

Ṅ = rN

(

1 −
N

K

)

?

Answer: Ṅ = 0 ⇒ rN (1 − N/K) = 0 ⇒ N = 0, N = K.

For stability at N = 0, consider

Ṅ = rN − (r/K)N2.

Key point: stability is a first-order effect in N –
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Stability Analysis

Problem 7 What are the fixed points points of the system

Ṅ = rN

(

1 −
N

K

)

?

Answer: Ṅ = 0 ⇒ rN (1 − N/K) = 0 ⇒ N = 0, N = K.

For stability at N = 0, consider

Ṅ = rN − (r/K)N2.

Key point: stability is a first-order effect in N – so the
extremely easy computation
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Stability Analysis

Problem 7 What are the fixed points points of the system

Ṅ = rN

(

1 −
N

K

)

?

Answer: Ṅ = 0 ⇒ rN (1 − N/K) = 0 ⇒ N = 0, N = K.

For stability at N = 0, consider

Ṅ = rN − (r/K)N2.

Key point: stability is a first-order effect in N – so the
extremely easy computation

Ṅ = rN + O(N2)

is sufficient to see system unstable at 0,
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Stability Analysis

Problem 7 What are the fixed points points of the system

Ṅ = rN

(

1 −
N

K

)

?

Answer: Ṅ = 0 ⇒ rN (1 − N/K) = 0 ⇒ N = 0, N = K.

For stability at N = 0, consider

Ṅ = rN − (r/K)N2.

Key point: stability is a first-order effect in N – so the
extremely easy computation

Ṅ = rN + O(N2)

is sufficient to see system unstable at 0, since r > 0.
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Stability Analysis

Now, why exactly is stability a first-order effect in x?
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Stability Analysis

Now, why exactly is stability a first-order effect in x?

dx/dt

x

Plot of dx/dt vs x 
("phase plane")
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Stability Analysis

Now, why exactly is stability a first-order effect in x?

Fixed Points

dx/dt

x

Plot of dx/dt vs x 
("phase plane")
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Stability Analysis

Positive slope around fixed point ⇒

Positive slope −−> away arrows
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Plot of dx/dt vs x 

("phase plane")
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Stability Analysis

Positive slope around fixed point ⇒ unstable fixed point.

Unstable fixed point

dx/dt

x

Plot of dx/dt vs x 

("phase plane")

Positive slope −−> away arrows
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Stability Analysis

Negative slope around fixed point ⇒

convergent arrows

dx/dt

x

Plot of dx/dt vs x 

("phase plane")

Negative slope −−>
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Stability Analysis

Negative slope around fixed point ⇒ stable fixed point.

Stable Fixed Point

dx/dt

x

Plot of dx/dt vs x 

("phase plane")

Negative slope −−>

convergent arrows
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Stability Analysis

If
ẋ = f(x)

then –
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Stability Analysis

If
ẋ = f(x)

then –

Problem 8 Write the Taylor series for f in x around fixed point xfp.
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Stability Analysis

If
ẋ = f(x)

then –

Problem 8 Write the Taylor series for f in x around fixed point xfp.

Answer: for x ∈ [xfp − ε, xfp + ε],

f(x) = f ′(xfp)(x− xfp) +
1

2
f ′′(xfp)(x− xfp)

2 + O((x− xfp)
3).
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Stability Analysis

If
ẋ = f(x)

then –

Problem 8 Write the Taylor series for f in x around fixed point xfp.

Answer: for x ∈ [xfp − ε, xfp + ε],

f(x) = f ′(xfp)(x− xfp) +
1

2
f ′′(xfp)(x− xfp)

2 + O((x− xfp)
3).

Why is there no zeroth-order term?
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Stability Analysis

If
ẋ = f(x)

then –

Problem 8 Write the Taylor series for f in x around fixed point xfp.

Answer: for x ∈ [xfp − ε, xfp + ε],

f(x) = f ′(xfp)(x− xfp) +
1

2
f ′′(xfp)(x− xfp)

2 + O((x− xfp)
3).

Why is there no zeroth-order term?

Because xfp is a fixed point, so f(xfp) = 0.
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Stability Analysis

Thus for x ∈ (xfp − ε, xfp + ε),

dx

dt
= f ′(xfp)(x − xfp) +

1

2
f ′′(xfp)(x − xfp)

2 + O((x − xfp)
3).
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Stability Analysis

Thus for x ∈ (xfp − ε, xfp + ε),

dx

dt
= f ′(xfp)(x − xfp) +

1

2
f ′′(xfp)(x − xfp)

2 + O((x − xfp)
3).

Hence, locally,

x(t) = Solution to First RHS Term + Small Correction .
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Thus for x ∈ (xfp − ε, xfp + ε),

dx

dt
= f ′(xfp)(x − xfp) +
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2
f ′′(xfp)(x − xfp)

2 + O((x − xfp)
3).

Hence, locally,

x(t) = Solution to First RHS Term + Small Correction .

Question: what is the form of the first RHS term?
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Stability Analysis

Thus for x ∈ (xfp − ε, xfp + ε),

dx

dt
= f ′(xfp)(x − xfp) +

1

2
f ′′(xfp)(x − xfp)

2 + O((x − xfp)
3).

Hence, locally,

x(t) = Solution to First RHS Term + Small Correction .

Question: what is the form of the first RHS term?

Answer: linear!
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Stability Analysis

Thus for x ∈ (xfp − ε, xfp + ε),

dx

dt
= f ′(xfp)(x − xfp) +

1

2
f ′′(xfp)(x − xfp)

2 + O((x − xfp)
3).

Hence, locally,

x(t) = Solution to First RHS Term + Small Correction .

Question: what is the form of the first RHS term?

Answer: linear! Thus, if x(0) − xfp is small,
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Stability Analysis

Thus for x ∈ (xfp − ε, xfp + ε),

dx

dt
= f ′(xfp)(x − xfp) +

1

2
f ′′(xfp)(x − xfp)

2 + O((x − xfp)
3).

Hence, locally,

x(t) = Solution to First RHS Term + Small Correction .

Question: what is the form of the first RHS term?

Answer: linear! Thus, if x(0) − xfp is small,

x(t) ∼ xfp + ef ′(xfp)t(x(0) − xfp).
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Stability Analysis

Thus for x ∈ (xfp − ε, xfp + ε),

dx

dt
= f ′(xfp)(x − xfp) +

1

2
f ′′(xfp)(x − xfp)

2 + O((x − xfp)
3).

Hence, locally,

x(t) = Solution to First RHS Term + Small Correction .

Question: what is the form of the first RHS term?

Answer: linear! Thus, if x(0) − xfp is small,

x(t) ∼ xfp + ef ′(xfp)t(x(0) − xfp).

Thus, if f ′(xfp) < 0, displacement from xfp shrinks (at least
locally).
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Stability Analysis

Thus for x ∈ (xfp − ε, xfp + ε),

dx

dt
= f ′(xfp)(x − xfp) +

1

2
f ′′(xfp)(x − xfp)

2 + O((x − xfp)
3).

Hence, locally,

x(t) = Solution to First RHS Term + Small Correction .

Question: what is the form of the first RHS term?

Answer: linear! Thus, if x(0) − xfp is small,

x(t) ∼ xfp + ef ′(xfp)t(x(0) − xfp).

Thus, if f ′(xfp) < 0, displacement from xfp shrinks (at least
locally). If f ′(xfp) > 0, displacement grows.
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Stability Analysis

We have a new strategy for analysis of non-linear ODEs:
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Stability Analysis

We have a new strategy for analysis of non-linear ODEs:

■ Solve f(x) = 0 for fixed points.



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 17/40

Stability Analysis

We have a new strategy for analysis of non-linear ODEs:

■ Solve f(x) = 0 for fixed points.
■ Write a Taylor series for f in x around fixed points.
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Stability Analysis

We have a new strategy for analysis of non-linear ODEs:

■ Solve f(x) = 0 for fixed points.
■ Write a Taylor series for f in x around fixed points.
■ Keep the first term. (“Linearization")
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Stability Analysis

We have a new strategy for analysis of non-linear ODEs:

■ Solve f(x) = 0 for fixed points.
■ Write a Taylor series for f in x around fixed points.
■ Keep the first term. (“Linearization")
■ Analyze signs for stability.
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Stability Analysis

We have a new strategy for analysis of non-linear ODEs:

■ Solve f(x) = 0 for fixed points.
■ Write a Taylor series for f in x around fixed points.
■ Keep the first term. (“Linearization")
■ Analyze signs for stability.
■ Plot on a phase-plane graph, and complete rough trajectory

sketches.
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Stability Analysis

We have a new strategy for analysis of non-linear ODEs:

■ Solve f(x) = 0 for fixed points.
■ Write a Taylor series for f in x around fixed points.
■ Keep the first term. (“Linearization")
■ Analyze signs for stability.
■ Plot on a phase-plane graph, and complete rough trajectory

sketches.

It’s both easy (or easier) to do and gives the insight we wanted
anyway.



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 18/40

Stability Analysis

Let’s go back to the logistic equation.
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Stability Analysis

Let’s go back to the logistic equation.

We wrote down

Ṅ = f(N) = rN − (r/K)N2 = r(N − 0) + O((N − 0)2).
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Stability Analysis

Let’s go back to the logistic equation.

We wrote down

Ṅ = f(N) = rN − (r/K)N2 = r(N − 0) + O((N − 0)2).

This was the Taylor series around fp N = 0.
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Stability Analysis

Let’s go back to the logistic equation.

We wrote down

Ṅ = f(N) = rN − (r/K)N2 = r(N − 0) + O((N − 0)2).

This was the Taylor series around fp N = 0.

Since r = f ′(N) > 0, 0 was an unstable fixed point.
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Stability Analysis

Let’s go back to the logistic equation.

We wrote down

Ṅ = f(N) = rN − (r/K)N2 = r(N − 0) + O((N − 0)2).

This was the Taylor series around fp N = 0.

Since r = f ′(N) > 0, 0 was an unstable fixed point.

Now, look at other fixed point, N = K.
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Stability Analysis

Let’s go back to the logistic equation.

We wrote down

Ṅ = f(N) = rN − (r/K)N2 = r(N − 0) + O((N − 0)2).

This was the Taylor series around fp N = 0.

Since r = f ′(N) > 0, 0 was an unstable fixed point.

Now, look at other fixed point, N = K.

Problem 9 What is the Taylor series of f around K?
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Stability Analysis

Let’s go back to the logistic equation.

We wrote down

Ṅ = f(N) = rN − (r/K)N2 = r(N − 0) + O((N − 0)2).

This was the Taylor series around fp N = 0.

Since r = f ′(N) > 0, 0 was an unstable fixed point.

Now, look at other fixed point, N = K.

Problem 9 What is the Taylor series of f around K?

Answer: Ṅ = −r(N − K) + O((N − K)2).
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Stability Analysis

Let’s go back to the logistic equation.

We wrote down

Ṅ = f(N) = rN − (r/K)N2 = r(N − 0) + O((N − 0)2).

This was the Taylor series around fp N = 0.

Since r = f ′(N) > 0, 0 was an unstable fixed point.

Now, look at other fixed point, N = K.

Problem 9 What is the Taylor series of f around K?

Answer: Ṅ = −r(N − K) + O((N − K)2).

Since −r < 0, K is a stable fixed point.
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Taking the derivative of f(N), we get

f ′(N) = r −
2rN

K
.
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Stability Analysis

We can actually learn more.
Taking the derivative of f(N), we get

f ′(N) = r −
2rN

K
.

Solving f ′(N) = 0 gives

N =
K

2
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Stability Analysis

We can actually learn more.
Taking the derivative of f(N), we get

f ′(N) = r −
2rN

K
.

Solving f ′(N) = 0 gives

N =
K

2
.

For N < K/2, f ′(N) > 0; for N > K/2, f ′(N) < 0.
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Stability Analysis

We can actually learn more.
Taking the derivative of f(N), we get

f ′(N) = r −
2rN

K
.

Solving f ′(N) = 0 gives

N =
K

2
.

For N < K/2, f ′(N) > 0; for N > K/2, f ′(N) < 0.

This info, along with the stability calculations, allows us to
qualitatively map out trajectories.
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Recall the other example:

ẋ = sin(x).
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ẋ = sin(x).

Problem 10 What are the fixed points, with stabilities, of this example?
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Stability Analysis

Recall the other example:

ẋ = sin(x).

Problem 10 What are the fixed points, with stabilities, of this example?

Answer: sin(x) = 0 at x = πi, for all i.



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 21/40

Stability Analysis

Recall the other example:

ẋ = sin(x).

Problem 10 What are the fixed points, with stabilities, of this example?

Answer: sin(x) = 0 at x = πi, for all i.

FP is unstable for 2πi, since sin′(x) = cos(x), and
cos(2πi) = 1 > 0.
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Stability Analysis

Recall the other example:

ẋ = sin(x).

Problem 10 What are the fixed points, with stabilities, of this example?

Answer: sin(x) = 0 at x = πi, for all i.

FP is unstable for 2πi, since sin′(x) = cos(x), and
cos(2πi) = 1 > 0. FP is stable for π(2i + 1) since
cos(π(2i + 1)) = −1 < 0.
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Stability Analysis

Recall the other example:

ẋ = sin(x).

Problem 10 What are the fixed points, with stabilities, of this example?

x

dx/dt

Unstable Fixed Points

Stable Fixed Points
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2D Stability Analysis

So much for 1-D stability analysis.
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2D Stability Analysis

So much for 1-D stability analysis.

Do we need to review multi-variable Taylor expansions?
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2D Stability Analysis

So much for 1-D stability analysis.

Do we need to review multi-variable Taylor expansions?

The 2-variable version of Taylor expansion is:

f(x, y) = f(x0, y0)

+
∂f

∂x
|(x0,y0) · (x − x0) +

∂f

∂y
|(x0,y0) · (y − y0)

+ O((x − x0)
2, (y − y0)

2).

(2)
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2D Stability Analysis

So much for 1-D stability analysis.

Do we need to review multi-variable Taylor expansions?

The 2-variable version of Taylor expansion is:

f(x, y) = f(x0, y0)

+
∂f

∂x
|(x0,y0) · (x − x0) +

∂f

∂y
|(x0,y0) · (y − y0)

+ O((x − x0)
2, (y − y0)

2).

(2)

I.e., zeroth-order + first-order + higher order terms.
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2D Stability Analysis

So much for 1-D stability analysis.

Do we need to review multi-variable Taylor expansions?

The 2-variable version of Taylor expansion is:

f(x, y) = f(x0, y0)

+
∂f

∂x
|(x0,y0) · (x − x0) +

∂f

∂y
|(x0,y0) · (y − y0)

+ O((x − x0)
2, (y − y0)

2).

(2)

I.e., zeroth-order + first-order + higher order terms.

Problem 11 Compute the Taylor expansion to second order for
f(x, y) = sin(xy) about (0, 1).
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2D Stability Analysis

Now, let’s say we’re given a 2-variable first-order differential
equation, like:



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 23/40

2D Stability Analysis

Now, let’s say we’re given a 2-variable first-order differential
equation, like:

ẋ = f(x, y); ẏ = g(x, y).
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2D Stability Analysis

Now, let’s say we’re given a 2-variable first-order differential
equation, like:

ẋ = f(x, y); ẏ = g(x, y).

Linear 2x2 matrices are a special case of this.
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2D Stability Analysis

Now, let’s say we’re given a 2-variable first-order differential
equation, like:

ẋ = f(x, y); ẏ = g(x, y).

Linear 2x2 matrices are a special case of this.

Problem 12 Write
[

ẋ

ẏ

]

=

[

a b

c d

][

x

y

]

in the above form.
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2D Stability Analysis

Now, let’s say we’re given a 2-variable first-order differential
equation, like:

ẋ = f(x, y); ẏ = g(x, y).

Linear 2x2 matrices are a special case of this.

Problem 12 Write
[

ẋ

ẏ

]

=

[

a b

c d

][

x

y

]

in the above form.

Answer: f(x, y) = ax + by and g(x, y) = cx + dy.
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2D Stability Analysis

Now, let’s say we’re given a 2-variable first-order differential
equation, like:

ẋ = f(x, y); ẏ = g(x, y).

Linear 2x2 matrices are a special case of this.

Problem 12 Write
[

ẋ

ẏ

]

=

[

a b

c d

][

x

y

]

in the above form.

Answer: f(x, y) = ax + by and g(x, y) = cx + dy.

We want to generalize the linearization process from 1-D to
2-D.



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 24/40

2D Stability Analysis

Suppose (xfp, yfp) is a fixed point of the system, i.e.

f(xfp, yfp) = g(xfp, yfp) = 0.
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2D Stability Analysis

Suppose (xfp, yfp) is a fixed point of the system, i.e.

f(xfp, yfp) = g(xfp, yfp) = 0.

Now, let’s use Taylor series as we did before;
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2D Stability Analysis

Suppose (xfp, yfp) is a fixed point of the system, i.e.

f(xfp, yfp) = g(xfp, yfp) = 0.

Now, let’s use Taylor series as we did before; First on f

f(x, y) = f(xfp, yfp)

+
∂f

∂x
|(xfp,yfp) · (x − xfp) +

∂f

∂y
|(xfp,yfp) · (y − yfp)

+ O((x − xfp)
2, (y − yfp)

2).
(3)
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2D Stability Analysis

Suppose (xfp, yfp) is a fixed point of the system, i.e.

f(xfp, yfp) = g(xfp, yfp) = 0.

Now, let’s use Taylor series as we did before; First on f

f(x, y) = f(xfp, yfp)

+
∂f

∂x
|(xfp,yfp) · (x − xfp) +

∂f

∂y
|(xfp,yfp) · (y − yfp)

+ O((x − xfp)
2, (y − yfp)

2).
(3)

f(x, y) =
∂f

∂x
|(xfp,yfp) · (x − xfp) +

∂f

∂y
|(xfp,yfp) · (y − yfp)

+ O((x − xfp)
2, (y − yfp)

2).

(4)
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2D Stability Analysis

Suppose (xfp, yfp) is a fixed point of the system, i.e.

f(xfp, yfp) = g(xfp, yfp) = 0.

Now, let’s use Taylor series as we did before; then on g

g(x, y) = g(xfp, yfp)

+
∂g

∂x
|(xfp,yfp) · (x − xfp) +

∂g

∂y
|(xfp,yfp) · (y − yfp)

+ O((x − xfp)
2, (y − yfp)

2).
(3)



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 24/40

2D Stability Analysis

Suppose (xfp, yfp) is a fixed point of the system, i.e.

f(xfp, yfp) = g(xfp, yfp) = 0.

Now, let’s use Taylor series as we did before; then on g

g(x, y) = g(xfp, yfp)

+
∂g

∂x
|(xfp,yfp) · (x − xfp) +

∂g

∂y
|(xfp,yfp) · (y − yfp)

+ O((x − xfp)
2, (y − yfp)

2).
(3)

g(x, y) =
∂g

∂x
|(xfp,yfp) · (x − xfp) +

∂g

∂y
|(xfp,yfp) · (y − yfp)

+ O((x − xfp)
2, (y − yfp)

2).

(4)
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2D Stability Analysis

Summarizing what we know:
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2D Stability Analysis

Summarizing what we know:

f(x, y) =
∂f

∂x
|(xfp,yfp) · (x−xfp)+

∂f

∂y
|(xfp,yfp) · (y−yfp)+HOT

and
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2D Stability Analysis

Summarizing what we know:

f(x, y) =
∂f

∂x
|(xfp,yfp) · (x−xfp)+

∂f

∂y
|(xfp,yfp) · (y−yfp)+HOT

and

g(x, y) =
∂g

∂x
|(xfp,yfp) · (x−xfp)+

∂g

∂y
|(xfp,yfp) · (y−yfp)+HOT.
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2D Stability Analysis

Summarizing what we know:

f(x, y) =
∂f

∂x
|(xfp,yfp) · (x−xfp)+

∂f

∂y
|(xfp,yfp) · (y−yfp)+HOT

and

g(x, y) =
∂g

∂x
|(xfp,yfp) · (x−xfp)+

∂g

∂y
|(xfp,yfp) · (y−yfp)+HOT.

Another way to write this is
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2D Stability Analysis

Summarizing what we know:

f(x, y) =
∂f

∂x
|(xfp,yfp) · (x−xfp)+

∂f

∂y
|(xfp,yfp) · (y−yfp)+HOT

and

g(x, y) =
∂g

∂x
|(xfp,yfp) · (x−xfp)+

∂g

∂y
|(xfp,yfp) · (y−yfp)+HOT.

Another way to write this is

x(t)−xfp =
∂f

∂x
|(xfp,yfp)·(x−xfp)+

∂f

∂y
|(xfp,yfp)·(y−yfp)+HOT ;
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2D Stability Analysis

Summarizing what we know:

f(x, y) =
∂f

∂x
|(xfp,yfp) · (x−xfp)+

∂f

∂y
|(xfp,yfp) · (y−yfp)+HOT

and

g(x, y) =
∂g

∂x
|(xfp,yfp) · (x−xfp)+

∂g

∂y
|(xfp,yfp) · (y−yfp)+HOT.

Another way to write this is

x(t)−xfp =
∂f

∂x
|(xfp,yfp)·(x−xfp)+

∂f

∂y
|(xfp,yfp)·(y−yfp)+HOT ;

and



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 25/40

2D Stability Analysis

Summarizing what we know:

f(x, y) =
∂f

∂x
|(xfp,yfp) · (x−xfp)+

∂f

∂y
|(xfp,yfp) · (y−yfp)+HOT

and

g(x, y) =
∂g

∂x
|(xfp,yfp) · (x−xfp)+

∂g

∂y
|(xfp,yfp) · (y−yfp)+HOT.

Another way to write this is

x(t)−xfp =
∂f

∂x
|(xfp,yfp)·(x−xfp)+

∂f

∂y
|(xfp,yfp)·(y−yfp)+HOT ;

and

y(t)−yfp =
∂g

∂x
|(xfp,yfp) ·(x−xfp)+

∂g

∂y
|(xfp,yfp) ·(y−yfp)+HOT.
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2D Stability Analysis

Stare at that for a moment, forgetting the HOTs:

x(t) − xfp =
∂f

∂x
|(xfp,yfp) · (x − xfp) +

∂f

∂y
|(xfp,yfp) · (y − yfp)

y(t) − yfp =
∂g

∂x
|(xfp,yfp) · (x − xfp) +

∂g

∂y
|(xfp,yfp) · (y − yfp).
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2D Stability Analysis

Stare at that for a moment, forgetting the HOTs:

x(t) − xfp =
∂f

∂x
|(xfp,yfp) · (x − xfp) +

∂f

∂y
|(xfp,yfp) · (y − yfp)

y(t) − yfp =
∂g

∂x
|(xfp,yfp) · (x − xfp) +

∂g

∂y
|(xfp,yfp) · (y − yfp).

Question: What kind of equation is this?
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2D Stability Analysis

Stare at that for a moment, forgetting the HOTs:

x(t) − xfp =
∂f

∂x
|(xfp,yfp) · (x − xfp) +

∂f

∂y
|(xfp,yfp) · (y − yfp)

y(t) − yfp =
∂g

∂x
|(xfp,yfp) · (x − xfp) +

∂g

∂y
|(xfp,yfp) · (y − yfp).

Question: What kind of equation is this?

Answer: A 2D matrix ODE! Namely,
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2D Stability Analysis

Stare at that for a moment, forgetting the HOTs:

x(t) − xfp =
∂f

∂x
|(xfp,yfp) · (x − xfp) +

∂f

∂y
|(xfp,yfp) · (y − yfp)

y(t) − yfp =
∂g

∂x
|(xfp,yfp) · (x − xfp) +

∂g

∂y
|(xfp,yfp) · (y − yfp).

Question: What kind of equation is this?

Answer: A 2D matrix ODE! Namely,
[

u̇

v̇

]

=

[

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

(x0,y0)

[

u

v

]

+ HOT

where u = x − xfp and v = y − yfp.
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2D Stability Analysis

Stare at that for a moment, forgetting the HOTs:

x(t) − xfp =
∂f

∂x
|(xfp,yfp) · (x − xfp) +

∂f

∂y
|(xfp,yfp) · (y − yfp)

y(t) − yfp =
∂g

∂x
|(xfp,yfp) · (x − xfp) +

∂g

∂y
|(xfp,yfp) · (y − yfp).

Question: What kind of equation is this?

Answer: A 2D matrix ODE! Namely,
[

u̇

v̇

]

=

[

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

(x0,y0)

[

u

v

]

+ HOT

where u = x − xfp and v = y − yfp.
But we know all about these!
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Population Growth Revisited

Now suppose there are two species, competing for resources.
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Population Growth Revisited

Now suppose there are two species, competing for resources.
Assume:
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Population Growth Revisited

Now suppose there are two species, competing for resources.
Assume:
■ Each species alone obeys logistic growth, with one faster

than the other. Say, rabbits (fast) vs. albatross (slow).
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Population Growth Revisited

Now suppose there are two species, competing for resources.
Assume:
■ Each species alone obeys logistic growth, with one faster

than the other. Say, rabbits (fast) vs. albatross (slow).
■ Species interact analogously to chemicals (“mass action"),

preventing each other from eating resources and thereby
lowering growth rates – but albatross are better competitors
and suffer less than rabbits.
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Population Growth Revisited

Now suppose there are two species, competing for resources.
Assume:
■ Each species alone obeys logistic growth, with one faster

than the other. Say, rabbits (fast) vs. albatross (slow).
■ Species interact analogously to chemicals (“mass action"),

preventing each other from eating resources and thereby
lowering growth rates – but albatross are better competitors
and suffer less than rabbits.

A model that formalizes these assumptions is:

ẋ = x(r1 − x − c1y); ẏ = y(r2 − c2x − y)

where x is rabbits, y is albatross, r1 > r2, c1 > c2, c1c2 > 1,
r1 < c1r2, and r2 < c2r1.
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Population Growth Revisited

Now suppose there are two species, competing for resources.
Assume:
■ Each species alone obeys logistic growth, with one faster

than the other. Say, rabbits (fast) vs. albatross (slow).
■ Species interact analogously to chemicals (“mass action"),

preventing each other from eating resources and thereby
lowering growth rates – but albatross are better competitors
and suffer less than rabbits.

A model that formalizes these assumptions is:

ẋ = x(r1 − x − c1y); ẏ = y(r2 − c2x − y)

where x is rabbits, y is albatross, r1 > r2, c1 > c2, c1c2 > 1,
r1 < c1r2, and r2 < c2r1.

This is the well-known Lotka-Volterra model; the constant
relationships have meaning we’ll understand.
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Population Growth Revisited

Problem 13 Compute the fixed points of this model.
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Population Growth Revisited

Problem 13 Compute the fixed points of this model.

Answer: (x, y) = (0, 0), (0, r2), (r1, 0), and
(

r1 − c1r2

1 − c1c2
,
r2 − r1c2)

1 − c1c2

)

.
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Population Growth Revisited

Problem 13 Compute the fixed points of this model.

Answer: (x, y) = (0, 0), (0, r2), (r1, 0), and
(

r1 − c1r2

1 − c1c2
,
r2 − r1c2)

1 − c1c2

)

.

The derivatives matrix is
[

r1 − 2x − c1y c1x

−c2y r2 − c2x − 2y

]

.
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Population Growth Revisited

Problem 13 Compute the fixed points of this model.

Answer: (x, y) = (0, 0), (0, r2), (r1, 0), and
(

r1 − c1r2

1 − c1c2
,
r2 − r1c2)

1 − c1c2

)

.

The derivatives matrix is
[

r1 − 2x − c1y c1x

−c2y r2 − c2x − 2y

]

.

So now let’s do the fixed point analysis one by one.
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Population Growth Revisited

At (0, 0), the linearization matrix is
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Population Growth Revisited

At (0, 0), the linearization matrix is
[

r1 − 2 · 0 − c1 · 0 c1 · 0

−c2 · 0 r2 − c2 · 0 − 2 · 0

]

=

[

r1 0

0 r2

]

.
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Population Growth Revisited

At (0, 0), the linearization matrix is
[

r1 − 2 · 0 − c1 · 0 c1 · 0

−c2 · 0 r2 − c2 · 0 − 2 · 0

]

=

[

r1 0

0 r2

]

.

Since r1, r2 > 0, this is an unstable node. (Makes biological
sense.) Since r1 > r2, trajectories leave (0, 0) parallel to r2

direction.
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Population Growth Revisited

At (0, 0), the linearization matrix is
[

r1 − 2 · 0 − c1 · 0 c1 · 0

−c2 · 0 r2 − c2 · 0 − 2 · 0

]

=

[

r1 0

0 r2

]

.

Since r1, r2 > 0, this is an unstable node. (Makes biological
sense.) Since r1 > r2, trajectories leave (0, 0) parallel to r2

direction.

albatross)

y

x
(fast direction −− rabbits)

(slow

direction

−−



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 30/40

Population Growth Revisited

At (0, r2), the linearization matrix is



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 30/40

Population Growth Revisited

At (0, r2), the linearization matrix is
[

r1 − c1r2 0

−c2r2 −r2

]

.



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 30/40

Population Growth Revisited

At (0, r2), the linearization matrix is
[

r1 − c1r2 0

−c2r2 −r2

]

.

Since r1 < c1r2 and −r2 < 0, this is an stable node.
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At (r1, 0), the linearization matrix is
[

−r1 c1r1

0 r2 − c2r1

]

.

Since −r1 < 0 and r2 < c2r1 this is also a stable node. (Again,
competitive exclusion.)
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At (r1, 0), the linearization matrix is
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Since −r1 < 0 and r2 < c2r1 this is also a stable node. (Again,
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At ((r1 − c1r2)/(1 − c1c2), (r2 − r1c2)/(1 − c1c2)), the
linearization matrix can be seen (after some algebra) to be
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At ((r1 − c1r2)/(1 − c1c2), (r2 − r1c2)/(1 − c1c2)), the
linearization matrix can be seen (after some algebra) to be

[
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At ((r1 − c1r2)/(1 − c1c2), (r2 − r1c2)/(1 − c1c2)), the
linearization matrix can be seen (after some algebra) to be

[

c1r2−r1

1−c1c2

c1(r1−c1r2)
1−c1c2

−c2(r2−r1c2

1−c1c2

r1c2−r2

1−c1c2

]

.

Trace is negative; determinant is negative; hence it’s a ...
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Putting all this together, we get:
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Limitations of Linearization

Consider the system (Strogatz p. 153)

ẋ = −y + ax(x2 + y2); ẏ = x + ay(x2 + y2)

where a is a parameter.
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Consider the system (Strogatz p. 153)

ẋ = −y + ax(x2 + y2); ẏ = x + ay(x2 + y2)

where a is a parameter. One obvious fixed point is at (0, 0).
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Limitations of Linearization

Consider the system (Strogatz p. 153)

ẋ = −y + ax(x2 + y2); ẏ = x + ay(x2 + y2)

where a is a parameter. One obvious fixed point is at (0, 0).

Problem 14 Compute the derivates matrix for this system (easily!).
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Limitations of Linearization

Consider the system (Strogatz p. 153)

ẋ = −y + ax(x2 + y2); ẏ = x + ay(x2 + y2)

where a is a parameter. One obvious fixed point is at (0, 0).

Problem 14 Compute the derivates matrix for this system (easily!).

Answer: Ignoring non-linear terms (since we’re at (0, 0)) gives
[

0 −1

1 0

]

.
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Limitations of Linearization

Consider the system (Strogatz p. 153)

ẋ = −y + ax(x2 + y2); ẏ = x + ay(x2 + y2)

where a is a parameter. One obvious fixed point is at (0, 0).

Problem 14 Compute the derivates matrix for this system (easily!).

In diagonal form:
[

i 0

0 i

]

predicting that
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Limitations of Linearization

Consider the system (Strogatz p. 153)

ẋ = −y + ax(x2 + y2); ẏ = x + ay(x2 + y2)

where a is a parameter. One obvious fixed point is at (0, 0).

Problem 14 Compute the derivates matrix for this system (easily!).

In diagonal form:
[

i 0

0 i

]

predicting that the system will rotate around the center for all
values of a.
However ...
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Limitations of Linearization

Let’s say we have the intuition to put

ẋ = −y + ax(x2 + y2); ẏ = x + ay(x2 + y2)

in polar form.
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Limitations of Linearization

Let’s say we have the intuition to put

ẋ = −y + ax(x2 + y2); ẏ = x + ay(x2 + y2)

in polar form.
Question: How would we do that? What does x go to? y?
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Limitations of Linearization

Let’s say we have the intuition to put

ẋ = −y + ax(x2 + y2); ẏ = x + ay(x2 + y2)

in polar form.
Question: How would we do that? What does x go to? y?

Answer: x 7→ rcos(θ) and y 7→ rsin(θ).



● Overview

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Modeling Population Growth

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● 2D Stability Analysis

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Population Growth Revisited

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limitations of Linearization

● Limits of Linearization

- p. 35/40

Limitations of Linearization

Let’s say we have the intuition to put

ẋ = −y + ax(x2 + y2); ẏ = x + ay(x2 + y2)

in polar form.
Question: How would we do that? What does x go to? y?

Answer: x 7→ rcos(θ) and y 7→ rsin(θ).
Plugging this in gives us an equivalent system in ṙ, θ̇, namely:
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Let’s say we have the intuition to put

ẋ = −y + ax(x2 + y2); ẏ = x + ay(x2 + y2)

in polar form.
Question: How would we do that? What does x go to? y?

Answer: x 7→ rcos(θ) and y 7→ rsin(θ).
Plugging this in gives us an equivalent system in ṙ, θ̇, namely:

ṙ = ar3; θ̇ = 1.
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Limitations of Linearization

Let’s say we have the intuition to put

ẋ = −y + ax(x2 + y2); ẏ = x + ay(x2 + y2)

in polar form.
Question: How would we do that? What does x go to? y?

Answer: x 7→ rcos(θ) and y 7→ rsin(θ).
Plugging this in gives us an equivalent system in ṙ, θ̇, namely:

ṙ = ar3; θ̇ = 1.

This is a decoupled system and can be analytically solved.
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Limitations of Linearization

Obviously: θ(t) = t + θ(0).
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Limitations of Linearization

Obviously: θ(t) = t + θ(0).

Problem 15 What is the solution to ṙ = ar3? Hint: bring the r to the LHS
and integrate.
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Limitations of Linearization

Obviously: θ(t) = t + θ(0).

Problem 15 What is the solution to ṙ = ar3? Hint: bring the r to the LHS
and integrate.

Answer:

r(t) =
r(0)

√

1 − 2r2(0)at
.
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Limitations of Linearization

Obviously: θ(t) = t + θ(0).

Problem 15 What is the solution to ṙ = ar3? Hint: bring the r to the LHS
and integrate.

Answer:

r(t) =
r(0)

√

1 − 2r2(0)at
.

But this is an inward spiral if a < 0 and an outward spiral if
a > 0.
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Limitations of Linearization

Obviously: θ(t) = t + θ(0).

Problem 15 What is the solution to ṙ = ar3? Hint: bring the r to the LHS
and integrate.

Answer:

r(t) =
r(0)

√

1 − 2r2(0)at
.

But this is an inward spiral if a < 0 and an outward spiral if
a > 0.

Thus: linearization is sometimes qualitatively wrong.
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Limitations of Linearization

Obviously: θ(t) = t + θ(0).

Problem 15 What is the solution to ṙ = ar3? Hint: bring the r to the LHS
and integrate.

Answer:

r(t) =
r(0)

√

1 − 2r2(0)at
.

But this is an inward spiral if a < 0 and an outward spiral if
a > 0.

Thus: linearization is sometimes qualitatively wrong.

What are the bad (sensitive) cases?
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Question: Where on this picture was the bad example we just
saw?
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Answer: A pure rotation, on the stable/unstable boundary.
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Question: Where were the correct examples, from the
population model?
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Answer: One was an unstable node.
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Answer: Another was a stable node.
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Answer: As was the third.
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Answer: And the fourth was a saddle.
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Limits of Linearization

Theorem 1 (Hartman-Grobman, etc...) Linearization is accurate in 2D if –
and only if – you can draw a small circle around the point and still be in the
same region in the 2-D classification diagram. That is, if you’re not on the
border. If you are on the border, small non-linear perturbations can
qualitatively change the behavior.
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This is in the middle of a region.
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So will accurately predict dynamics.
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This one,
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These border cases may be wrong about shape (i.e. spiral vs.
saddle vs. node) ...
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... but not about stability, since they’re isolated from the stability
dividing line.
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This border case (pure rotation) is the worst ... here,
linearization may mispredict shape and stability.
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Limitations of Linearization

Most cases are not on the border, So linearization is “usually"
close enough ...
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Limitations of Linearization

“Linearization may not be perfect, but it sure is close
enough for government work."

– Tom, United Technologies aerospace engineer (Pratt &
Whitney), retired.
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We:
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■ Analyzed and classified behavior of static linear systems,
■ and saw a canonical form that made them transparent.
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ODEs.
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ODEs.
■ and drew a picture of all 2-d systems.
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Summary

We:
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■ Used that form to classify the dynamical behavior of linear

ODEs.
■ and drew a picture of all 2-d systems.
■ Saw phenomena not captured by linear systems,
■ developed a method for (partially) analyzing them,
■ and probed the limits of the method.

Philosophy: eigenvalues/vectors are (almost) everything.
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