Lecture 1: More Linear Algebra

Overview

More Linear Algebra

The topics will be:

More Linear Algebra

The topics will be:

■ More Linear Algebra (Day 1)

More Linear Algebra

The topics will be:

- More Linear Algebra (Day 1)
- Analyzing Linear ODEs (Day 1 & 2)

More Linear Algebra

The topics will be:

- More Linear Algebra (Day 1)
- Analyzing Linear ODEs (Day 1 & 2)
- Light Intro to Non-linear Systems (Day 2)

Overview

More Linear Algebra

The topics will be:

- More Linear Algebra (Day 1)
- Analyzing Linear ODEs (Day 1 & 2)
- Light Intro to Non-linear Systems (Day 2)

The philosophy:

Overview

More Linear Algebra

The topics will be:

- More Linear Algebra (Day 1)
- Analyzing Linear ODEs (Day 1 & 2)
- Light Intro to Non-linear Systems (Day 2)

The philosophy: get as comfortable as possible with qualitative behavior of linear systems(topic 2, requiring topic 1);

Overview

More Linear Algebra

The topics will be:

- More Linear Algebra (Day 1)
- Analyzing Linear ODEs (Day 1 & 2)
- Light Intro to Non-linear Systems (Day 2)

The philosophy: get as comfortable as possible with qualitative behavior of linear systems(topic 2, requiring topic 1); then understand how non-linear systems can quickly differ (topic 3).

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

More Linear Algebra

Overview

More Linear Algebra

Matrices Represent ALOT

- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Matrices:

Overview

More Linear Algebra

Matrices Represent ALOT

- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- = 0.1.a.1.0.a. = .go.1.7.1.a., 0.0
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \dots & & a_{2n} \\ \vdots & & & \vdots \\ a_{n1} & \dots & & a_{nn} \end{bmatrix}$$

Overview

More Linear Algebra

Matrices Represent ALOT

- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \dots & & a_{2n} \\ \vdots & & & \vdots \\ a_{n1} & \dots & & a_{nn} \end{bmatrix}$$

represent a lot of things.

Overview

More Linear Algebra

Matrices Represent ALOT

- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \dots & & a_{2n} \\ \vdots & & & \vdots \\ a_{n1} & \dots & & a_{nn} \end{bmatrix}$$

represent a lot of things. Simultaneous linear algebra.

Overview

More Linear Algebra

Matrices Represent ALOT

- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- Talipotericy
- A Simple Form

Matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \dots & & a_{2n} \\ \vdots & & & \vdots \\ a_{n1} & \dots & & a_{nn} \end{bmatrix}$$

represent a lot of things. Simultaneous linear algebra.

Operators that map vectors to vectors:

$$L: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
; given by $x \mapsto Ax$

Overview

More Linear Algebra

Matrices Represent ALOT

- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasco
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- 3. ..,.
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \dots & & a_{2n} \\ \vdots & & & \vdots \\ a_{n1} & \dots & & a_{nn} \end{bmatrix}$$

represent a lot of things. Simultaneous linear algebra.

Operators that map vectors to vectors:

$$L: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
; given by $x \mapsto Ax$

Linear ODEs:

$$\frac{dx}{dt} = Ax; x(0) = x_0$$

Overview

More Linear Algebra

Matrices Represent ALOT

- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- CommutativityCommutativity
- Eigenbases
- Ligoribasco
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- 3. . . , .
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \dots & & a_{2n} \\ \vdots & & & \vdots \\ a_{n1} & \dots & & a_{nn} \end{bmatrix}$$

represent a lot of things. Simultaneous linear algebra.

Operators that map vectors to vectors:

$$L: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
; given by $x \mapsto Ax$

Linear ODEs:

$$\frac{dx}{dt} = Ax; x(0) = x_0$$

And, as you'll see in SB200, probabilistic processes.

Overview

More Linear Algebra

Matrices Represent ALOT

The Main Point

- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But the Main Point is that:

Overview

More Linear Algebra

Matrices Represent ALOT

The Main Point

- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But the Main Point is that:

Matrices are COMPLETELY classifiable.

Overview

More Linear Algebra

Matrices Represent ALOT

● The Main Point

- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But the Main Point is that:

Matrices are COMPLETELY classifiable.

Meaning, there is a standard "view" that every matrix can be put into that renders all of its properties, like:

Overview

More Linear Algebra

Matrices Represent ALOT

The Main Point

- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But the Main Point is that:

Matrices are COMPLETELY classifiable.

Meaning, there is a standard "view" that every matrix can be put into that renders all of its properties, like:

■ The existence and uniqueness of solutions to Ax = b

Overview

More Linear Algebra

Matrices Represent ALOT

The Main Point

- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity

- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Eigenbases Eigenbases But the Main Point is that:

Matrices are COMPLETELY classifiable.

Meaning, there is a standard "view" that every matrix can be put into that renders all of its properties, like:

- The existence and uniqueness of solutions to Ax = b
- \blacksquare The range and behavior of the linear operator L

Overview

More Linear Algebra

Matrices Represent ALOT

The Main Point

- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasco
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Nilpotency

But the Main Point is that:

Matrices are COMPLETELY classifiable.

Meaning, there is a standard "view" that every matrix can be put into that renders all of its properties, like:

- The existence and uniqueness of solutions to Ax = b
- \blacksquare The range and behavior of the linear operator L
- the dynamic and steady-state behavior of $\dot{x} = Ax$

Overview

More Linear Algebra

Matrices Represent ALOT

The Main Point

- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But the Main Point is that:

Matrices are COMPLETELY classifiable.

Meaning, there is a standard "view" that every matrix can be put into that renders all of its properties, like:

- The existence and uniqueness of solutions to Ax = b
- \blacksquare The range and behavior of the linear operator L
- the dynamic and steady-state behavior of $\dot{x} = Ax$
- and a great many other things,

Overview

More Linear Algebra

Matrices Represent ALOT

The Main Point

- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasco
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But the Main Point is that:

Matrices are COMPLETELY classifiable.

Meaning, there is a standard "view" that every matrix can be put into that renders all of its properties, like:

- The existence and uniqueness of solutions to Ax = b
- \blacksquare The range and behavior of the linear operator L
- the dynamic and steady-state behavior of $\dot{x} = Ax$
- and a great many other things,

COMPLETELY obvious.

Overview

More Linear Algebra

Matrices Represent ALOT

The Main Point

- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Nilpotency

But the Main Point is that:

Matrices are COMPLETELY classifiable.

Meaning, there is a standard "view" that every matrix can be put into that renders all of its properties, like:

- The existence and uniqueness of solutions to Ax = b
- \blacksquare The range and behavior of the linear operator L
- the dynamic and steady-state behavior of $\dot{x} = Ax$
- and a great many other things,

COMPLETELY obvious.

Goal of this lecture: give you intuition for how this works.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point

A Practical Problem

- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

The most important practical problem in basic linear algebra is:

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point

A Practical Problem

- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

The most important practical problem in basic linear algebra is:

Figuring out how to calculate

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point

A Practical Problem

- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

The most important practical problem in basic linear algebra is:

Figuring out how to calculate

 e^A

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point

A Practical Problem

- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

The most important practical problem in basic linear algebra is:

Figuring out how to calculate

 e^A

efficiently.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point

A Practical Problem

- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

The most important practical problem in basic linear algebra is:

Figuring out how to calculate

 e^A

efficiently.

This problem is inspired by ODEs.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point

A Practical Problem

- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

The most important practical problem in basic linear algebra is:

Figuring out how to calculate

 e^A

efficiently.

This problem is inspired by ODEs.

It drives all (or really, most) of the theory.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem

Commutativity

- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

For any two real (or complex) numbers a and b,

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem

Commutativity

- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

For any two real (or complex) numbers a and b,

$$a \cdot b = b \cdot a$$
.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem

Commutativity

- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

For any two real (or complex) numbers a and b,

$$a \cdot b = b \cdot a$$
.

This is the *commutativity* property.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem

Commutativity

- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

For any two real (or complex) numbers a and b,

$$a \cdot b = b \cdot a$$
.

This is the *commutativity* property. But matices are *not always* commutative.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem

Commutativity

- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasos
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-AnalysisBehavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

For any two real (or complex) numbers a and b,

$$a \cdot b = b \cdot a$$
.

This is the *commutativity* property. But matices are *not always* commutative.

Problem 1 Find two 2x2 matrices A and B such that

$$AB \neq BA$$
; that is, $[A, B] = AB - BA \neq 0$.

[A,B] is called the "commutator" of A and B.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem

Commutativity

- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

For any two real (or complex) numbers a and b,

$$a \cdot b = b \cdot a$$
.

This is the *commutativity* property. But matices are *not always* commutative.

Problem 1 Find two 2x2 matrices A and B such that

$$AB \neq BA$$
; that is, $[A, B] = AB - BA \neq 0$.

[A, B] is called the "commutator" of A and B.

Notice that A always commutes with e^A , because

$$Ae^{A} = A\left(\sum_{n=0}^{\infty} \frac{A^{n}}{n!}\right) = \sum_{n=0}^{\infty} \frac{A^{n+1}}{n!} = \left(\sum_{i=0}^{\infty} \frac{A^{n}}{n!}\right)A.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity

Commutativity

- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Why do we care about commutativity?

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity

Commutativity

- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Why do we care about commutativity?

Remember the motivating problem (exponentiation).

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity

Commutativity

- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Why do we care about commutativity?

Remember the motivating problem (exponentiation).

If
$$[A, B] = AB - BA = 0$$
, then

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity

Commutativity

- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Why do we care about commutativity?

Remember the motivating problem (exponentiation).

If
$$[A, B] = AB - BA = 0$$
, then

$$e^{A+B} = e^A e^B = e^B e^A$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity

Commutativity

- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- . .
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Why do we care about commutativity?

Remember the motivating problem (exponentiation).

If
$$[A, B] = AB - BA = 0$$
, then

$$e^{A+B} = e^A e^B = e^B e^A$$

which might make the computation easier.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity

Commutativity

- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Why do we care about commutativity?

Remember the motivating problem (exponentiation).

If
$$[A, B] = AB - BA = 0$$
, then

$$e^{A+B} = e^A e^B = e^B e^A$$

which might make the computation easier.

Problem 2 Compute

$$exp\left(\begin{bmatrix}1 & 0\\ 2 & 1\end{bmatrix}t\right).$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity

Commutativity

- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- 3. .,.
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Why do we care about commutativity?

Remember the motivating problem (exponentiation).

If
$$[A, B] = AB - BA = 0$$
, then

$$e^{A+B} = e^A e^B = e^B e^A$$

which might make the computation easier.

Problem 2 Compute

$$exp\left(\begin{bmatrix}1&0\\2&1\end{bmatrix}t\right).$$

Answer:

$$\begin{bmatrix} e^t & 0 \\ 2te^t & e^t \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity

Commutativity

- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But there's a deeper interpretation.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity

Commutativity

- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

• A Circula Faur

But there's a deeper interpretation.

Problem 3 Show the following Little Fact 1: if A and B are diagonal matrices, then they commute.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity

Commutativity

- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But there's a deeper interpretation.

Problem 3 Show the following Little Fact 1: if A and B are diagonal matrices, then they commute.

Reason: because diagonal matrix multiplication is just like a parallel version of regular number multiplication, separately on each diagonal.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity

Commutativity

- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But there's a deeper interpretation.

Problem 3 Show the following Little Fact 1: if A and B are diagonal matrices, then they commute.

Reason: because diagonal matrix multiplication is just like a parallel version of regular number multiplication, separately on each diagonal.

Problem 4 Show the following Little Fact 2: diagonal matrices with all the diagonal numbers being the same commute with all matrices.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity

Commutativity

- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But there's a deeper interpretation.

Problem 3 Show the following Little Fact 1: if A and B are diagonal matrices, then they commute.

Reason: because diagonal matrix multiplication is just like a parallel version of regular number multiplication, separately on each diagonal.

Problem 4 Show the following Little Fact 2: diagonal matrices with all the diagonal numbers being the same commute with *all* matrices.

Reason: A(bI) = b(AI) = bA = (bI)A; i.e. the identity matrix (obviously) commutes with everything.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity

Rotation Matrices

- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Before we go on, a little aside.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity

Rotation Matrices

- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
-p,
- Nilpotency
- Nilpotency
- A Simple Form

Before we go on, a little aside.

Problem 5 What does the matrix

$$R_{\theta} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$

do?

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity

Rotation Matrices

- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Before we go on, a little aside.

Problem 5 What does the matrix

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

do?

Answer: it rotates the plane through angle θ .

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity

Rotation Matrices

- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasos
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Before we go on, a little aside.

Problem 5 What does the matrix

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

do?

Answer: it rotates the plane through angle θ . What is its inverse? Well,

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity

Rotation Matrices

- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Before we go on, a little aside.

Problem 5 What does the matrix

$$R_{\theta} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$

do?

Answer: it rotates the plane through angle θ . What is its inverse? Well.

$$(R_{\theta})^{-1} = R_{-\theta} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}.$$

But remember $cos(-\theta) = cos(\theta)$ and $sin(-\theta) = -sin(\theta)$, so

$$R_{\theta}^{-1} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices

Rotation Matrices

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

To rotate in three dimensions, we need three different rotations:

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices

Rotation Matrices

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- EigenbasesBehavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Bonavioral Eigen / maryon
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

To rotate in three dimensions, we need three different rotations:

$$R_{\theta}^{x,y} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}; R_{\theta}^{y,z} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices

Rotation Matrices

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

To rotate in three dimensions, we need three different rotations:

$$R_{\theta}^{x,y} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}; \ R_{\theta}^{y,z} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

and

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices

Rotation Matrices

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

To rotate in three dimensions, we need three different rotations:

$$R_{\theta}^{x,y} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}; \ R_{\theta}^{y,z} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

and

$$R_{\theta}^{x,z} = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices

Rotation Matrices

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

To rotate in three dimensions, we need three different rotations:

$$R_{\theta}^{x,y} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}; R_{\theta}^{y,z} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

and

$$R_{\theta}^{x,z} = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}.$$

There are higher-dimensional versions for each n.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Back to commutativity. Let's consider two 2x2 matrices.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- EigenbasesBehavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Donavioral Eigen / thatyold
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Back to commutativity. Let's consider two 2x2 matrices. First,

$$A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

where a and b are real numbers.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Back to commutativity. Let's consider two 2x2 matrices. First,

$$A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

where a and b are real numbers.

A stretches the x axis by factor a and the y axis by factor b, making a circle into an ellipse.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Back to commutativity. Let's consider two 2x2 matrices. First.

$$A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

where a and b are real numbers.

For example, if a < 1 and b > 1, then the picture is

Figure 1: Stretching action of a 2x2 diagonal matrix

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Back to commutativity. Let's consider two 2x2 matrices. First.

$$A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

where a and b are real numbers.

Conversely, if a > 1 and b < 1, then the picture is

Figure 1: Stretching action of a 2x2 diagonal matrix

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Back to commutativity. Let's consider two 2x2 matrices. First,

$$A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

where a and b are real numbers.

Problem 6 What are the eigenvalues and eigenvectors of A?

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Back to commutativity. Let's consider two 2x2 matrices. First,

$$A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

where a and b are real numbers.

Problem 6 What are the eigenvalues and eigenvectors of A?

Answer: $([1\ 0], a)$ and $([0\ 1], b)$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Ok, so we have one matrix, A. Now for the second matrix, B.

- p. 13/38

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Ok, so we have one matrix, A. Now for the second matrix, B.

Problem 7 Find a 2x2 matrix B with eigenvalues α and β , and whose eigenvectors are rotated from x and y axis basis vectors by angle θ . Hint: use R_{θ} as a change-of-basis.

Overview

More Linear Algebra

- Matrices Represent ALOT
- A Practical Problem
- Commutativity
- Commutativity
- Rotation Matrices
- Commutativity

Commutativity

- Eigenbases

- Behavioral Eigen-Analysis

The Main Point

Commutativity

Rotation Matrices

Commutativity

Commutativity

Commutativity

Commutativity

Eigenbases

Eigenbases

Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

Behavioral Eigen-Analysis Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

Nilpotency

Nilpotency

Nilpotency

Nilpotency

A Simple Form

Ok, so we have one matrix, A. Now for the second matrix, B.

Problem 7 Find a 2x2 matrix B with eigenvalues α and β , and whose eigenvectors are rotated from x and y axis basis vectors by angle θ . Hint: use R_{θ} as a change-of-basis.

Answer:

$$B = R_{\theta} \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} (R_{\theta})^{-1} = \begin{bmatrix} \alpha \cos^{2}(\theta) + \beta \sin^{2}(\theta) & (\alpha - \beta)\sin(\theta)\cos(\theta) \\ (\alpha - \beta)\sin(\theta)\cos(\theta) & \alpha \sin^{2}(\theta) + \beta \cos^{2}(\theta) \end{bmatrix}$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Nilpotency

Ok, so we have one matrix, A. Now for the second matrix, B.

Problem 7 Find a 2x2 matrix B with eigenvalues α and β , and whose eigenvectors are rotated from x and y axis basis vectors by angle θ . Hint: use R_{θ} as a change-of-basis.

Answer:

$$B = R_{\theta} \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} (R_{\theta})^{-1} = \begin{bmatrix} \alpha \cos^{2}(\theta) + \beta \sin^{2}(\theta) & (\alpha - \beta)\sin(\theta)\cos(\theta) \\ (\alpha - \beta)\sin(\theta)\cos(\theta) & \alpha \sin^{2}(\theta) + \beta \cos^{2}(\theta) \end{bmatrix}$$

By construction, the eigenvectors and eigenvalues of B are $([cos(\theta), sin(\theta)])$ with value α) and $[cos(\theta + \pi/2), sin(\theta + \pi/2)]$ with value β).

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Ok, so we have one matrix, A. Now for the second matrix, B.

Problem 7 Find a 2x2 matrix B with eigenvalues α and β , and whose eigenvectors are rotated from x and y axis basis vectors by angle θ . Hint: use R_{θ} as a change-of-basis.

Answer:

$$B = R_{\theta} \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} (R_{\theta})^{-1} = \begin{bmatrix} \alpha \cos^{2}(\theta) + \beta \sin^{2}(\theta) & (\alpha - \beta)\sin(\theta)\cos(\theta) \\ (\alpha - \beta)\sin(\theta)\cos(\theta) & \alpha \sin^{2}(\theta) + \beta \cos^{2}(\theta) \end{bmatrix}$$

By construction, the eigenvectors and eigenvalues of B are $([cos(\theta), sin(\theta)])$ with value α) and $[cos(\theta + \pi/2), sin(\theta + \pi/2)]$ with value β).

Question: why is the $\pi/2$ there in the second eigenvector?

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now let's figure out when A and B commute.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- EigenbasesBehavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now let's figure out when A and B commute. On the one hand,

$$AB = \begin{bmatrix} a\alpha\cos^2(\theta) + a\beta\sin^2(\theta) & a(\alpha - \beta)\sin(\theta)\cos(\theta) \\ b(\alpha - \beta)\sin(\theta)\cos(\theta) & b\alpha\sin^2(th) + b\beta\cos^2(\theta) \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- 20.1a.1.01a. _.go... / ...a.) o..
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now let's figure out when A and B commute. On the one hand,

$$AB = \begin{bmatrix} a\alpha\cos^2(\theta) + a\beta\sin^2(\theta) & a(\alpha - \beta)\sin(\theta)\cos(\theta) \\ b(\alpha - \beta)\sin(\theta)\cos(\theta) & b\alpha\sin^2(th) + b\beta\cos^2(\theta) \end{bmatrix}.$$

On the other hand,

$$BA = \begin{bmatrix} a\alpha\cos^2(\theta) + a\beta\sin^2(\theta) & b(\alpha - \beta)\sin(\theta)\cos(\theta) \\ a(\alpha - \beta)\sin(\theta)\cos(\theta) & b\alpha\sin^2(th) + b\beta\cos^2(\theta) \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Now let's figure out when A and B commute. On the one hand,

$$AB = \begin{bmatrix} a\alpha cos^{2}(\theta) + a\beta sin^{2}(\theta) & a(\alpha - \beta)sin(\theta)cos(\theta) \\ b(\alpha - \beta)sin(\theta)cos(\theta) & b\alpha sin^{2}(th) + b\beta cos^{2}(\theta) \end{bmatrix}.$$

On the other hand,

$$BA = \begin{bmatrix} a\alpha\cos^2(\theta) + a\beta\sin^2(\theta) & b(\alpha - \beta)\sin(\theta)\cos(\theta) \\ a(\alpha - \beta)\sin(\theta)\cos(\theta) & b\alpha\sin^2(th) + b\beta\cos^2(\theta) \end{bmatrix}.$$

Problem 8 When are AB and BA equal?

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Now let's figure out when A and B commute. On the one hand,

$$AB = \begin{bmatrix} a\alpha cos^{2}(\theta) + a\beta sin^{2}(\theta) & a(\alpha - \beta)sin(\theta)cos(\theta) \\ b(\alpha - \beta)sin(\theta)cos(\theta) & b\alpha sin^{2}(th) + b\beta cos^{2}(\theta) \end{bmatrix}.$$

On the other hand,

$$BA = \begin{bmatrix} a\alpha\cos^2(\theta) + a\beta\sin^2(\theta) & b(\alpha - \beta)\sin(\theta)\cos(\theta) \\ a(\alpha - \beta)\sin(\theta)\cos(\theta) & b\alpha\sin^2(th) + b\beta\cos^2(\theta) \end{bmatrix}.$$

Problem 8 When are AB and BA equal?

Answer: When 1) a=b, or 2) $\alpha=\beta$ or 3) $\theta=0,\pi/2,\pi,3\pi/2$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But now, let's look at the cases one by one.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Case 1: a = b. In that case,

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity

Commutativity

- Commutativity
- CommutativityCommutativity
- Eigenbases
- Ligeribases
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- = 0.1.a.1.0.a. = .go.1.7.1.a., 0.0
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Case 1: a = b. In that case, $A = aI_2$, where I_2 is the 2x2 identity matrix.

identity matrix.

Overview

More Linear Algebra

- Matrices Represent ALOT
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

The Main Point A Practical Problem

Claim:

- $[cos(\theta), sin(\theta)]$ and $[cos(\theta + \pi/2), sin(\theta + \pi/2)]$
- are just as good eigenvectors for A as the original ones.

Case 1: a = b. In that case, $A = aI_2$, where I_2 is the 2x2

- p. 15/38

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Case 1: a = b. In that case, $A = aI_2$, where I_2 is the 2x2 identity matrix.

Claim:

$$[cos(\theta), sin(\theta)]$$
 and $[cos(\theta + \pi/2), sin(\theta + \pi/2)]$

are just as good eigenvectors for A as the original ones.

Problem 9 Why? (Don't give a computational proof.)

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Nilpotency

Case 1: a = b. In that case, $A = aI_2$, where I_2 is the 2x2 identity matrix.

Claim:

$$[cos(\theta), sin(\theta)]$$
 and $[cos(\theta + \pi/2), sin(\theta + \pi/2)]$

are just as good eigenvectors for A as the original ones.

Problem 9 Why? (Don't give a computational proof.)

Answer: because the two original eigenvectors [0,1] and [1,0]have the same eigenvalue, so linear combinations are also eigenvectors.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Case 1: a = b. In that case, $A = aI_2$, where I_2 is the 2x2 identity matrix.

Claim:

$$[cos(\theta), sin(\theta)]$$
 and $[cos(\theta + \pi/2), sin(\theta + \pi/2)]$

are just as good eigenvectors for A as the original ones.

Problem 9 Why? (Don't give a computational proof.)

Answer: because the two original eigenvectors [0,1] and [1,0] have the *same eigenvalue*, so linear combinations are also eigenvectors.

Hence: Case 1) \Rightarrow A and B have a common set of eigenvectors.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, Case 2: $\alpha = \beta$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, Case 2: $\alpha = \beta$. In this case,

$$B = R_{\theta} \alpha \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (R_{\theta})^{-1} = \alpha R_{\theta} (R_{\theta})^{-1} = \alpha I_2.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, Case 2: $\alpha = \beta$. In this case,

$$B = R_{\theta} \alpha \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (R_{\theta})^{-1} = \alpha R_{\theta} (R_{\theta})^{-1} = \alpha I_2.$$

But that means we're in the same situation as Case 1. Again, common eigenvectors.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, Case 2: $\alpha = \beta$. In this case,

$$B = R_{\theta} \alpha \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (R_{\theta})^{-1} = \alpha R_{\theta} (R_{\theta})^{-1} = \alpha I_2.$$

But that means we're in the same situation as Case 1. Again, common eigenvectors.

Finally, Case 3: $\theta = 0, \pi/2, \pi$, or $3\pi/2$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, Case 2: $\alpha = \beta$. In this case,

$$B = R_{\theta} \alpha \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (R_{\theta})^{-1} = \alpha R_{\theta} (R_{\theta})^{-1} = \alpha I_2.$$

But that means we're in the same situation as Case 1. Again, common eigenvectors.

Finally, Case 3: $\theta = 0, \pi/2, \pi$, or $3\pi/2$.

Problem 10 What are the eigenvectors of B in this case?

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, Case 2: $\alpha = \beta$. In this case,

$$B = R_{\theta} \alpha \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (R_{\theta})^{-1} = \alpha R_{\theta} (R_{\theta})^{-1} = \alpha I_2.$$

But that means we're in the same situation as Case 1. Again, common eigenvectors.

Finally, Case 3: $\theta = 0, \pi/2, \pi$, or $3\pi/2$.

Problem 10 What are the eigenvectors of B in this case?

Answer: [0 1] and [1 0].

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, Case 2: $\alpha = \beta$. In this case,

$$B = R_{\theta} \alpha \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (R_{\theta})^{-1} = \alpha R_{\theta} (R_{\theta})^{-1} = \alpha I_2.$$

But that means we're in the same situation as Case 1. Again, common eigenvectors.

Finally, Case 3: $\theta = 0, \pi/2, \pi, \text{ or } 3\pi/2.$

Problem 10 What are the eigenvectors of B in this case?

Answer: $[0\ 1]$ and $[1\ 0]$.

Again! A and B have a common set of eigenvectors.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Little Facts 1 and 2 above also say the same thing.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Eigenbases
- Eigenbases
- EigenbasesBehavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Bonavioral Eigen / maryor
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the same matrix S, then A and B commute.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the same matrix S, then A and B commute.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the same matrix S, then A and B commute.

$$\blacksquare AB = (XD_AX^{-1})(XD_BX^{-1}),$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the same matrix S, then A and B commute.

- $\blacksquare AB = (XD_AX^{-1})(XD_BX^{-1}),$
- $\blacksquare = XD_A(X^{-1}X)D_BX^{-1}$ by associativity

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- commutativity
- Commutativity

Commutativity

- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the same matrix S, then A and B commute.

- $\blacksquare AB = (XD_AX^{-1})(XD_BX^{-1}),$
- $\blacksquare = XD_A(X^{-1}X)D_BX^{-1}$ by associativity
- $\blacksquare = XD_AD_BX^{-1}$ since $X^{-1}X = I$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- commutativity
- Commutativity

Commutativity

- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the same matrix S, then A and B commute.

- $\blacksquare AB = (XD_AX^{-1})(XD_BX^{-1}),$
- $\blacksquare = XD_A(X^{-1}X)D_BX^{-1}$ by associativity
- $\blacksquare = XD_AD_BX^{-1}$ since $X^{-1}X = I$
- $\blacksquare = XD_BD_AX^{-1}$ by Litte Fact 1

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the same matrix S, then A and B commute.

- $\blacksquare AB = (XD_AX^{-1})(XD_BX^{-1}),$
- $\blacksquare = XD_A(X^{-1}X)D_BX^{-1}$ by associativity
- $\blacksquare = XD_AD_BX^{-1}$ since $X^{-1}X = I$
- $\blacksquare = XD_BD_AX^{-1}$ by Litte Fact 1
- $\blacksquare = XD_B(X^{-1}X)D_AX^{-1}$ we've inserted $X^{-1}X = I$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Commutativity

- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the same matrix S, then A and B commute.

- $\blacksquare AB = (XD_AX^{-1})(XD_BX^{-1}),$
- $\blacksquare = XD_A(X^{-1}X)D_BX^{-1}$ by associativity
- $\blacksquare = XD_AD_BX^{-1} \text{ since } X^{-1}X = I$
- $\blacksquare = XD_BD_AX^{-1}$ by Litte Fact 1
- $\blacksquare = XD_B(X^{-1}X)D_AX^{-1}$ we've inserted $X^{-1}X = I$
- $\blacksquare = (XD_BX^{-1}(XD_AX^{-1}) = BA.$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity

- Eigenbases
- Eigenbases
- EigenbasesBehavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- AD 1 1 1 1 1 1 1 1 1
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the same matrix S, then A and B commute.

Reason:

- $\blacksquare AB = (XD_AX^{-1})(XD_BX^{-1}),$
- $\blacksquare = XD_A(X^{-1}X)D_BX^{-1}$ by associativity
- $\blacksquare = XD_AD_BX^{-1} \text{ since } X^{-1}X = I$
- $\blacksquare = XD_BD_AX^{-1}$ by Litte Fact 1
- $\blacksquare = XD_B(X^{-1}X)D_AX^{-1}$ we've inserted $X^{-1}X = I$
- $\blacksquare = (XD_B X^{-1} (XD_A X^{-1}) = BA.$

A key fact is that the *converse* is true.

Theorem 1 If A and B are both diagonalizable, then they are commutative if and only if they have a common eigenbasis.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Eigenbases

- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- 2011a 1101a. 2.go.. 7 ...a.) 0.1
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's go back to the notion of an eigenbasis, that is,

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity

Eigenbases

- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Bonavioral Eigen / maryon
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's go back to the notion of an eigenbasis, that is,

a set $\{v_1, \ldots, v_n\}$ of distinct eigenvectors. An eigenbasis exists IFF a matrix is diagonalizable.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- -----
- Commutativity

Eigenbases

- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Let's go back to the notion of an eigenbasis, that is,

a set $\{v_1, \dots, v_n\}$ of distinct eigenvectors. An eigenbasis exists IFF a matrix is diagonalizable.

$$A = [v_1 \mid v_2 \mid \dots v_n] \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & \lambda_n \end{bmatrix} [v_1 \mid v_2 \mid \dots v_n]^{-1}$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases

- Eigenbases Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's go back to the notion of an eigenbasis, that is,

a set $\{v_1, \ldots, v_n\}$ of distinct eigenvectors. An eigenbasis exists IFF a matrix is diagonalizable.

$$A = [v_1 \mid v_2 \mid \dots v_n] \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 & \lambda_n \end{bmatrix} [v_1 \mid v_2 \mid \dots v_n]^{-1}$$

where $Av_i = \lambda_i v_i$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases

- Eigenbases
- Eigenbases Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's go back to the notion of an eigenbasis, that is,

a set $\{v_1, \ldots, v_n\}$ of distinct eigenvectors. An eigenbasis exists IFF a matrix is diagonalizable.

$$A = [v_1 \mid v_2 \mid \dots v_n] \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & \lambda_n \end{bmatrix} [v_1 \mid v_2 \mid \dots v_n]^{-1}$$

where $Av_i = \lambda_i v_i$.

Of course, the v_i and λ_i might (have to) be complex, even if A is real.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Eigenbases

Behavioral Eigen-Analysis Behavioral Eigen-Analysis

where $Av_i = \lambda_i v_i$.

Of course, the v_i and λ_i might (have to) be complex, even if A is real. We'll come back to this.

Let's go back to the notion of an eigenbasis, that is,

a set $\{v_1, \ldots, v_n\}$ of distinct eigenvectors.

An eigenbasis exists IFF a matrix is diagonalizable.

$$A = [v_1 \mid v_2 \mid \dots v_n] \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & \lambda_n \end{bmatrix} [v_1 \mid v_2 \mid \dots v_n]^{-1}$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases

Eigenbases

- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, suppose that A is diagonalizable,

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases

Eigenbases

- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, suppose that A is diagonalizable, and has $\{v_1, \ldots, v_n\}$ as n = dim(A) independent eigenvectors.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases

Eigenbases

- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Nilpotency

Now, suppose that A is diagonalizable, and has $\{v_1, \ldots, v_n\}$ as n = dim(A) independent eigenvectors.

Collect them in groups of equal eigenvalues, say, in decreasing order:

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases

Eigenbases

- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Now, suppose that A is diagonalizable, and has $\{v_1, \ldots, v_n\}$ as n = dim(A) independent eigenvectors.

Collect them in groups of equal eigenvalues, say, in decreasing order:

 $v_{\lambda_1}^1, v_{\lambda_1}^2, \dots, v_{\lambda_n}^{n_1}$ have eigenvalue $\lambda_1 = \lambda_{max}$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases

Eigenbases

- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, suppose that A is diagonalizable, and has $\{v_1, \ldots, v_n\}$ as n = dim(A) independent eigenvectors.

Collect them in groups of equal eigenvalues, say, in decreasing order:

$$v_{\lambda_1}^1, v_{\lambda_1}^2, \dots, v_{\lambda_1}^{n_1}$$
 have eigenvalue $\lambda_1 = \lambda_{max}$

$$v_{\lambda_2}^1, v_{\lambda_2}^2, \dots, v_{\lambda_2}^{n_2}$$
 have eigenvalue $\lambda_2 < \lambda_1$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity Commutativity
- Eigenbases

Eigenbases

- Eigenbases Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Now, suppose that A is diagonalizable, and has $\{v_1, \ldots, v_n\}$ as n = dim(A) independent eigenvectors.

Collect them in groups of equal eigenvalues, say, in decreasing order:

$$v_{\lambda_1}^1, v_{\lambda_1}^2, \dots, v_{\lambda_1}^{n_1}$$
 have eigenvalue $\lambda_1 = \lambda_{max}$

$$v_{\lambda_2}^1, v_{\lambda_2}^2, \dots, v_{\lambda_2}^{n_2}$$
 have eigenvalue $\lambda_2 < \lambda_1$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- CommutativityCommutativity
- Eigenbases

Eigenbases

- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, suppose that A is diagonalizable, and has $\{v_1,\ldots,v_n\}$ as n=dim(A) independent eigenvectors.

Collect them in groups of equal eigenvalues, say, in decreasing order:

$$v_{\lambda_1}^1, v_{\lambda_1}^2, \dots, v_{\lambda_1}^{n_1}$$
 have eigenvalue $\lambda_1 = \lambda_{max}$

$$v_{\lambda_2}^1, v_{\lambda_2}^2, \dots, v_{\lambda_2}^{n_2}$$
 have eigenvalue $\lambda_2 < \lambda_1$

$$v_{\lambda_m}^m, v^2 \lambda_m, \dots, v_{\lambda_m}^{n_m}$$
 have eigenvalue $\lambda_m = \lambda_{min}$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity Commutativity
- Eigenbases

Eigenbases

- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, suppose that A is diagonalizable, and has $\{v_1,\ldots,v_n\}$ as n = dim(A) independent eigenvectors.

Collect them in groups of equal eigenvalues, say, in decreasing order:

$$v_{\lambda_1}^1, v_{\lambda_1}^2, \dots, v_{\lambda_1}^{n_1}$$
 have eigenvalue $\lambda_1 = \lambda_{max}$

$$v_{\lambda_2}^1, v_{\lambda_2}^2, \dots, v_{\lambda_2}^{n_2}$$
 have eigenvalue $\lambda_2 < \lambda_1$

$$v_{\lambda_m}^m, v^2 \lambda_m, \dots, v_{\lambda_m}^{n_m}$$
 have eigenvalue $\lambda_m = \lambda_{min}$.

$$m={\sf number}$$
 of distinct eigenvalues, and

$$n_1 + n_2 + \ldots + n_m = \sum_i n_i = dim(A) = n.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases

Eigenbases

- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

We can think of A (after some change of basis) as

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases

● Eigenbases

- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

We can think of A (after some change of basis) as

$$A = \begin{bmatrix} \lambda_1 I_{n_1} & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 I_{n_2} & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & \lambda_m I_{n_m} \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases

Eigenbases

- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

We can think of A (after some change of basis) as

$$A = \begin{bmatrix} \lambda_1 I_{n_1} & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 I_{n_2} & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & \lambda_m I_{n_m} \end{bmatrix}.$$

Each block $\lambda_i I_{n_i}$ is the *eigenspace* associated with eigenvalue λ_i .

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Deliavioral Ligeri-Arialysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

We can think of A (after some change of basis) as

$$A = \begin{bmatrix} \lambda_1 I_{n_1} & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 I_{n_2} & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & \lambda_m I_{n_m} \end{bmatrix}.$$

Each block $\lambda_i I_{n_i}$ is the eigenspace associated with eigenvalue λ_i .

Problem 12 Show: for each i, A_{λ_i} is a vector space with dimension n_i .

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases

Eigenbases

- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

We can think of A (after some change of basis) as

$$A = \begin{bmatrix} \lambda_1 I_{n_1} & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 I_{n_2} & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & \lambda_m I_{n_m} \end{bmatrix}.$$

Each block $\lambda_i I_{n_i}$ is the *eigenspace* associated with eigenvalue λ_i .

Problem 12 Show: for each i, A_{λ_i} is a vector space with dimension n_i .

Reason: linear combinations of eigenvectors with the same eigenvalue are also eigenvectors with that eigenvalue.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases

Eigenbases

- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

We can think of A (after some change of basis) as

$$A = \begin{bmatrix} \lambda_1 I_{n_1} & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 I_{n_2} & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & \lambda_m I_{n_m} \end{bmatrix}.$$

Each block $\lambda_i I_{n_i}$ is the *eigenspace* associated with eigenvalue λ_i .

Problem 12 Show: for each i, A_{λ_i} is a vector space with dimension n_i .

Reason: linear combinations of eigenvectors with the same eigenvalue are also eigenvectors with that eigenvalue. For the same reason, any basis of A_{λ_i} is equivalent to any other, for the purposes of diagonalization.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's get back to the issue of complex and real eigenvalues.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's get back to the issue of complex and real eigenvalues. Suppose all the eigenvalues of A are real. Then

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's get back to the issue of complex and real eigenvalues. Suppose all the eigenvalues of A are real. Then

$$A = SDS^{-1}$$
 where

$$D = \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 & \lambda_n \end{bmatrix}$$

is a diagonal matrix with all real entries along the diagonal.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Let's get back to the issue of complex and real eigenvalues. Suppose all the eigenvalues of A are real. Then

$$A = SDS^{-1}$$
 where

$$D = \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & \lambda_n \end{bmatrix}$$

is a diagonal matrix with all real entries along the diagonal.

Question: what does a diagonal matrix with real entries correspond to? (don't forget some could be negative)

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Let's get back to the issue of complex and real eigenvalues. Suppose all the eigenvalues of A are real. Then

$$A = SDS^{-1}$$
 where

$$D = \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & \lambda_n \end{bmatrix}$$

is a diagonal matrix with all real entries along the diagonal.

Question: what does a diagonal matrix with real entries correspond to? (don't forget some could be negative) Answer: stretching along various directions, with a flip as well if negative.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Hm, what does a complex eigenvalue correspond to?

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Hm, what does a complex eigenvalue correspond to?

Problem 13 Compute the eigenvalues and eigenvectors of

$$R_{\theta} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A O!----I- F-
- A Simple Form

Hm, what does a complex eigenvalue correspond to?

Problem 13 Compute the eigenvalues and eigenvectors of

$$R_{\theta} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}.$$

Answer: $v_1 = [1 \ i]$, with eigenvalue $cos(\theta) - isin(\theta)$ and $v_2 = [i \ 1]$ with eigenvalue $cos(\theta) + isin(\theta)$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Hm, what does a complex eigenvalue correspond to?

Problem 13 Compute the eigenvalues and eigenvectors of

$$R_{\theta} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}.$$

Answer: $v_1 = [1 \ i]$, with eigenvalue $cos(\theta) - isin(\theta)$ and $v_2 = [i \ 1]$ with eigenvalue $cos(\theta) + isin(\theta)$.

Now, notice three facts:

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasos
- EigenbasesEigenbases
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Hm, what does a complex eigenvalue correspond to?

Problem 13 Compute the eigenvalues and eigenvectors of

$$R_{\theta} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}.$$

Answer: $v_1 = [1 \ i]$, with eigenvalue $cos(\theta) - isin(\theta)$ and $v_2 = [i \ 1]$ with eigenvalue $cos(\theta) + isin(\theta)$.

Now, notice three facts:

Rotation here corresponds to complex eigenvalues/eigenvectors.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasco
- EigenbasesEigenbases
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Hm, what does a complex eigenvalue correspond to?

Problem 13 Compute the eigenvalues and eigenvectors of

$$R_{\theta} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}.$$

Answer: $v_1 = [1 \ i]$, with eigenvalue $cos(\theta) - isin(\theta)$ and $v_2 = [i \ 1]$ with eigenvalue $cos(\theta) + isin(\theta)$.

Now, notice three facts:

- Rotation here corresponds to complex eigenvalues/eigenvectors.
- The eigenvalues are complex conjugates of each other.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Hm, what does a complex eigenvalue correspond to?

Problem 13 Compute the eigenvalues and eigenvectors of

$$R_{\theta} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}.$$

Answer: $v_1 = [1 \ i]$, with eigenvalue $cos(\theta) - isin(\theta)$ and $v_2 = [i \ 1]$ with eigenvalue $cos(\theta) + isin(\theta)$.

Now, notice three facts:

- Rotation here corresponds to complex eigenvalues/eigenvectors.
- The eigenvalues are complex conjugates of each other.
- Conjugate pair corresponds to real 2x2 with equal diagonal elements, \pm off-diagonals.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's see why these facts are general.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is λ .

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-AnalysisBehavioral Eigen-Analysis

● Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is $\bar{\lambda}$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-AnalysisBehavioral Eigen-Analysis

● Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is $\bar{\lambda}$.

Reason:

■ If $Ax = \lambda x$, then conjugating gives:

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is $\bar{\lambda}$.

- If $Ax = \lambda x$, then conjugating gives:
- $\blacksquare \ \overline{Ax} = \overline{\lambda x} = \overline{A}\overline{x} = \overline{\lambda}\overline{x}.$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Nilpotency

Let's see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is $\bar{\lambda}$.

- If $Ax = \lambda x$, then conjugating gives:
- $\blacksquare \ \overline{Ax} = \overline{\lambda x} = \overline{A}\overline{x} = \overline{\lambda}\overline{x}.$
- \blacksquare since A is real, $\bar{A}=A$, so

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasco
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is $\bar{\lambda}$.

- If $Ax = \lambda x$, then conjugating gives:
- $\blacksquare \ \overline{Ax} = \overline{\lambda x} = \overline{A}\overline{x} = \overline{\lambda}\overline{x}.$
- \blacksquare since A is real, $\bar{A}=A$, so
- $\blacksquare A\bar{x} = \bar{\lambda}\bar{x}$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Let's see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is λ .

- If $Ax = \lambda x$, then conjugating gives:
- $\overline{Ax} = \overline{\lambda x} = \overline{A}\overline{x} = \overline{\lambda}\overline{x}.$
- \blacksquare since A is real, $\bar{A}=A$, so
- $\mathbf{A}\bar{x} = \bar{\lambda}\bar{x}$
- \blacksquare so λ is an eigenvalue by definition.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Hence, the eigenvalues of A can be listed in two groups.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- EigenbasesBehavioral Eigen-Analysis
- ,
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Hence, the eigenvalues of A can be listed in two groups.

Real values: r_1, r_2, \ldots, r_k and

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Hence, the eigenvalues of A can be listed in two groups.

Real values: r_1, r_2, \ldots, r_k and non-real values:

$$c_1, \bar{c_1}, c_2, \bar{c_2}, \ldots, c_l, \bar{c_l}$$
.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Hence, the eigenvalues of A can be listed in two groups.

Real values: r_1, r_2, \ldots, r_k and non-real values:

$$c_1, \bar{c_1}, c_2, \bar{c_2}, \ldots, c_l, \bar{c_l}$$
.

So, when diagonalized,

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form
- / Cimple i on

Hence, the eigenvalues of A can be listed in two groups.

Real values: r_1, r_2, \ldots, r_k and non-real values:

$$c_1, \bar{c_1}, c_2, \bar{c_2}, \ldots, c_l, \bar{c_l}$$
.

So, when diagonalized,

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But consider those complex pair-blocks

$$\mathsf{Block}_i = egin{bmatrix} c_i & 0 \ 0 & ar{c_i} \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But consider those complex pair-blocks

$$\mathsf{Block}_i = \begin{bmatrix} c_i & 0 \\ 0 & \bar{c_i} \end{bmatrix}.$$

In fact, they correspond to real matrices. Namely:

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But consider those complex pair-blocks

$$\mathsf{Block}_i = egin{bmatrix} c_i & 0 \ 0 & ar{c}_i \end{bmatrix}.$$

In fact, they correspond to real matrices. Namely: Block $_i$ is the same up to change of basis as

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But consider those complex pair-blocks

$$\mathsf{Block}_i = \begin{bmatrix} c_i & 0 \\ 0 & \bar{c_i} \end{bmatrix}.$$

In fact, they correspond to real matrices. Namely: Block_i is the same up to change of basis as

$$\begin{bmatrix} a_i & -b_i \\ b_i & a_i \end{bmatrix}$$

where $a_i = Re(c_i)$ and $b_i = Im(c_i)$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But consider those complex pair-blocks

$$\mathsf{Block}_i = \begin{bmatrix} c_i & 0 \\ 0 & \bar{c_i} \end{bmatrix}.$$

In fact, they correspond to real matrices. Namely: Block_i is the same up to change of basis as

$$\begin{bmatrix} a_i & -b_i \\ b_i & a_i \end{bmatrix}$$

where $a_i = Re(c_i)$ and $b_i = Im(c_i)$.

Problem 15 This is a constant times a rotation matrix. Which one? (Hint: use the definition of cosine.)

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

But consider those complex pair-blocks

$$\mathsf{Block}_i = \begin{bmatrix} c_i & 0 \\ 0 & \bar{c_i} \end{bmatrix}.$$

In fact, they correspond to real matrices. Namely: Block_i is the same up to change of basis as

$$\begin{bmatrix} a_i & -b_i \\ b_i & a_i \end{bmatrix}$$

where $a_i = Re(c_i)$ and $b_i = Im(c_i)$.

Problem 15 This is a constant times a rotation matrix. Which one? (Hint: use the definition of cosine.)

Answer: rotation angle is $\theta_i = \cos^{-1}(a_i/\sqrt{a_i^2 + b_i^2})$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Thus, we have a TOTAL behavioral understanding of diagonalizable real matrices:

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- EigenbasesBehavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- 3. ..,.
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Thus, we have a TOTAL behavioral understanding of diagonalizable real matrices:

Theorem 2 All such matrices can be written as SDS^{-1} where D has diagonal elements corresponding to real-eigenvalue dilations or 2x2 blocks corresponding to complex-eigenvalue rotation-dilations.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Thus, we have a TOTAL behavioral understanding of diagonalizable real matrices:

Theorem 2 All such matrices can be written as SDS^{-1} where D has diagonal elements corresponding to real-eigenvalue dilations or 2x2 blocks corresponding to complex-eigenvalue rotation-dilations.

Moreover: the rotation rate and stretch multiple are controlled by the eigenvalues.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Thus, we have a TOTAL behavioral understanding of diagonalizable real matrices:

Theorem 2 All such matrices can be written as SDS^{-1} where D has diagonal elements corresponding to real-eigenvalue dilations or 2x2 blocks corresponding to complex-eigenvalue rotation-dilations.

Moreover: the rotation rate and stretch multiple are controlled by the eigenvalues.

But what if the matrix is *not* diagonalizable? i.e

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- 3. ..,.
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Behavioral Eigen-Analysis

- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Thus, we have a TOTAL behavioral understanding of diagonalizable real matrices:

Theorem 2 All such matrices can be written as SDS^{-1} where D has diagonal elements corresponding to real-eigenvalue dilations or 2x2 blocks corresponding to complex-eigenvalue rotation-dilations.

Moreover: the rotation rate and stretch multiple are controlled by the eigenvalues.

But what if the matrix is *not* diagonalizable? i.e

What if we can't find n linearly independent eigenvectors?

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis

Nilpotency

- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

We started with one property of scalars that matrices didn't share (commutativity).

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis

Nilpotency

- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

We started with one property of scalars that matrices didn't share (commutativity). Here's another:

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis

Nilpotency

- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

We started with one property of scalars that matrices didn't share (commutativity). Here's another:

For all real (or complex) numbers a, if $a^k = 0 \implies a = 0$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis

Nilpotency

- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

We started with one property of scalars that matrices didn't share (commutativity). Here's another:

For all real (or complex) numbers a, if $a^k = 0 \implies a = 0$.

Problem 16 Find a non-zero 2x2 matrix A such that $A^2 = 0$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis

Nilpotency

- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

We started with one property of scalars that matrices didn't share (commutativity). Here's another:

For all real (or complex) numbers a, if $a^k = 0 \implies a = 0$.

Problem 16 Find a non-zero 2x2 matrix A such that $A^2 = 0$.

Answer: the standard answer is

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

We started with one property of scalars that matrices didn't share (commutativity). Here's another:

For all real (or complex) numbers a, if $a^k = 0 \implies a = 0$.

Problem 16 Find a non-zero 2x2 matrix A such that $A^2 = 0$.

Answer: the standard answer is

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Problem 17 Compute the eigenvalues and eigenvalues of this A.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- EigenbasesBehavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Deliavioral Ligeri-Arialys
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis

Nilpotency

- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

We started with one property of scalars that matrices didn't share (commutativity). Here's another:

For all real (or complex) numbers a, if $a^k = 0 \implies a = 0$.

Problem 16 Find a non-zero 2x2 matrix A such that $A^2 = 0$.

Answer: the standard answer is

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Problem 17 Compute the eigenvalues and eigenvalues of this A.

Answer: Trick question. A has no non-trivial eigenvectors.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

A matrix is said to be *nilpotent* if $A^k = 0$ for some k.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Nilpotency

A matrix is said to be *nilpotent* if $A^k = 0$ for some k.

Problem 18 Find an n-by-n matrix such that $A^{n-1}=0$ but $A^i\neq 0$ for i < n-1 (A is the said to be "nilpotent of order n-1").

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasos
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

A matrix is said to be *nilpotent* if $A^k = 0$ for some k.

Problem 18 Find an n-by-n matrix such that $A^{n-1}=0$ but $A^i\neq 0$ for i< n-1 (A is the said to be "nilpotent of order n-1").

Answer: Standard answer is

$$N_n = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & & 0 & 1 \\ 0 & \dots & & & 0 \end{bmatrix}$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasoc
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

A matrix is said to be *nilpotent* if $A^k = 0$ for some k.

Problem 18 Find an n-by-n matrix such that $A^{n-1}=0$ but $A^i\neq 0$ for i< n-1 (A is the said to be "nilpotent of order n-1").

Answer: Standard answer is

$$N_n = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & & 0 & 1 \\ 0 & \dots & & & 0 \end{bmatrix}$$

This matrix has *no* non-trivial eigenvectors.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

A matrix is said to be *nilpotent* if $A^k = 0$ for some k.

Problem 18 Find an n-by-n matrix such that $A^{n-1}=0$ but $A^i\neq 0$ for i< n-1 (A is the said to be "nilpotent of order n-1").

Answer: Standard answer is

$$N_n = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & & & 0 & 1 \\ 0 & \dots & & & & 0 \end{bmatrix}$$

This matrix has *no* non-trivial eigenvectors. It's behavior is like a step-by-step "collapser":

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency

Nilpotency

- Nilpotency
- Nilpotency
- A Simple Form

A matrix is said to be *nilpotent* if $A^k = 0$ for some k.

Problem 18 Find an n-by-n matrix such that $A^{n-1}=0$ but $A^i\neq 0$ for i < n-1 (A is the said to be "nilpotent of order n-1").

Answer: Standard answer is

$$N_n = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & & & 0 & 1 \\ 0 & \dots & & & & 0 \end{bmatrix}$$

This matrix has *no* non-trivial eigenvectors. It's behavior is like a step-by-step "collapser":

$$e_n \to e_{n-1} \to \ldots \to e_1 \to 0.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency

Nilpotency

- Nilpotency
- A Simple Form

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency

Nilpotency

- Nilpotency
- A Simple Form

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- -----
- Nilpotency
- Nilpotency

Nilpotency

- Nilpotency
- A Simple Form

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

Reason:

■ Suppose $Nx = \lambda x$ and N is nilpotent.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency

Nilpotency

- Nilpotency
- A Simple Form

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

- Suppose $Nx = \lambda x$ and N is nilpotent.
- Then $N^l x = \lambda^l x$ for all l.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency

Nilpotency

- Nilpotency
- A Simple Form

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

- Suppose $Nx = \lambda x$ and N is nilpotent.
- Then $N^l x = \lambda^l x$ for all l.
- But $\lambda^l \neq 0$ for all l,

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency

Nilpotency

- Nilpotency
- A Simple Form

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

- Suppose $Nx = \lambda x$ and N is nilpotent.
- Then $N^l x = \lambda^l x$ for all l.
- But $\lambda^l \neq 0$ for all l,
- which conflicts with $N^k = 0$ for some k.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- CommutativityCommutativity
- Eigenbases
- Ligoribasco
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency

Nilpotency

- Nilpotency
- A Simple Form

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

Reason:

- Suppose $Nx = \lambda x$ and N is nilpotent.
- Then $N^l x = \lambda^l x$ for all l.
- But $\lambda^l \neq 0$ for all l,
- which conflicts with $N^k = 0$ for some k.

So we might suspect: nilpotent matrices fill in the "hole" left by the non-diagonalizable parts of arbitrary matrix.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency

- Nilpotency
- A Simple Form

Nilpotency

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

Reason:

- Suppose $Nx = \lambda x$ and N is nilpotent.
- Then $N^l x = \lambda^l x$ for all l.
- But $\lambda^l \neq 0$ for all l,
- which conflicts with $N^k = 0$ for some k.

So we might suspect: nilpotent matrices fill in the "hole" left by the non-diagonalizable parts of arbitrary matrix.

The lack of eigenvectors of nilpotent matrices could make up for the missing dimensions in a non-diagonal matrix.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency

Nilpotency

A Simple Form

Theorem 3 All nilpotent matrices can be put into the standard form – that is all zeros, except 1s on the "super-diagonal".

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency

Nilpotency

A Simple Form

Theorem 3 All nilpotent matrices can be put into the standard form – that is all zeros, except 1s on the "super-diagonal".

That is, if an n-by-n matrix A is nilpotent of order n-1, then there is an invertible matrix S such that

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency

Nilpotency

A Simple Form

Theorem 3 All nilpotent matrices can be put into the standard form – that is all zeros, except 1s on the "super-diagonal".

That is, if an n-by-n matrix A is nilpotent of order n-1, then there is an invertible matrix S such that

$$A = S \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & & 0 & 1 \\ 0 & \dots & & & 0 \end{bmatrix}$$

$$S^{-1} = SN_n S^{-1}.$$

Nilpotency

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency

Nilpotency

■ A Simple Form

Theorem 3 All nilpotent matrices can be put into the standard form – that is all zeros, except 1s on the "super-diagonal".

That is, if an n-by-n matrix A is nilpotent of order n-1, then there is an invertible matrix S such that

$$A = S \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & & 0 & 1 \\ 0 & \dots & & & 0 \end{bmatrix}$$
$$S^{-1} = SN_n S^{-1}.$$

Lower-order nilpotency \Rightarrow some smaller N_i blocks.

Nilpotency

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency

Nilpotency

A Simple Form

Theorem 3 All nilpotent matrices can be put into the standard form – that is all zeros, except 1s on the "super-diagonal".

That is, if an n-by-n matrix A is nilpotent of order n-1, then there is an invertible matrix S such that

$$A = S \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & & 0 & 1 \\ 0 & \dots & & & 0 \end{bmatrix}$$
$$S^{-1} = SN_n S^{-1}.$$

Lower-order nilpotency \Rightarrow some smaller N_i blocks.

To fill in the "missing eigenvector" gap, let's add diagonal matrices to nilpontent matrices.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

● A Simple Form

Let λ be any complex number.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- Tripotoricy

● A Simple Form

Let λ be any complex number. Now, let $J_n^{\lambda} = \lambda I_n + N_n$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Let λ be any complex number. Now, let $J_n^{\lambda} = \lambda I_n + N_n$. This is the sum of the simplest diagonal and nilpotent matrices.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

● A Simple Form

Let λ be any complex number. Now, let $J_n^{\lambda} = \lambda I_n + N_n$. This is the sum of the simplest diagonal and nilpotent matrices.

$$J_n^{\lambda} = \begin{bmatrix} \lambda & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & & \lambda & 1 \\ 0 & \dots & & & \lambda \end{bmatrix}$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- EigenbasesBehavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Deliavioral Ligeri-Arialysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let λ be any complex number. Now, let $J_n^{\lambda} = \lambda I_n + N_n$. This is the sum of the simplest diagonal and nilpotent matrices.

$$J_n^{\lambda} = \begin{bmatrix} \lambda & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & & \lambda & 1 \\ 0 & \dots & & & \lambda \end{bmatrix}.$$

Problem 20 What are the eigenvalues/vectors of J_n^{λ} ?

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- •
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let λ be any complex number. Now, let $J_n^{\lambda} = \lambda I_n + N_n$. This is the sum of the simplest diagonal and nilpotent matrices.

$$J_n^{\lambda} = \begin{bmatrix} \lambda & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & & \lambda & 1 \\ 0 & \dots & & & \lambda \end{bmatrix}.$$

Problem 20 What are the eigenvalues/vectors of J_n^{λ} ?

Answer: $[1\ 0\ \dots\ 0]$ is the only eigenvector, with eigenvalue λ .

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Ok, $[1\ 0\ \dots\ 0]$ was the only eigenvector of J_n^{λ} , so it's not diagonalizable, etc...

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Ok, $[1\ 0\ \dots\ 0]$ was the only eigenvector of J_n^{λ} , so it's not diagonalizable, etc... but,

Problem 21 Compute

$$(J_n^{\lambda} - \lambda I_n)^{n-1}.$$

Fast.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasco
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Ok, $[1\ 0\ \dots\ 0]$ was the only eigenvector of J_n^{λ} , so it's not diagonalizable, etc... but,

Problem 21 Compute

$$(J_n^{\lambda} - \lambda I_n)^{n-1}.$$

Fast.

Answer: 0, b/c the stuff inside the parentheses is just N_n , the nilpotent matrix.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasco
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- 3. .,..
- Behavioral Eigen-Analysis
- Behavioral Eigen-AnalysisBehavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Ok, $[1\ 0\ \dots\ 0]$ was the only eigenvector of J_n^{λ} , so it's not diagonalizable, etc... but,

Problem 21 Compute

$$(J_n^{\lambda} - \lambda I_n)^{n-1}.$$

Fast.

Answer: 0, b/c the stuff inside the parentheses is just N_n , the nilpotent matrix.

Hence, all vectors are "generalized" eigenvectors;

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Ligoribasco
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Ok, $[1\ 0\ \dots\ 0]$ was the only eigenvector of J_n^{λ} , so it's not diagonalizable, etc... but,

Problem 21 Compute

$$(J_n^{\lambda} - \lambda I_n)^{n-1}.$$

Fast.

Answer: 0, b/c the stuff inside the parentheses is just N_n , the nilpotent matrix.

Hence, all vectors are "generalized" eigenvectors; x is a generalized eigenvector of A with generalized eigenvalue λ if there is a k such that $(A - \lambda I_n)^k(x) = 0$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- ,
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Ok, $[1\ 0\ \dots\ 0]$ was the only eigenvector of J_n^{λ} , so it's not diagonalizable, etc... but,

Problem 21 Compute

$$(J_n^{\lambda} - \lambda I_n)^{n-1}.$$

Fast.

Answer: 0, b/c the stuff inside the parentheses is just N_n , the nilpotent matrix.

Hence, all vectors are "generalized" eigenvectors; x is a generalized eigenvector of A with generalized eigenvalue λ if there is a k such that $(A - \lambda I_n)^k(x) = 0$.

(.... it a power of k where there was 1 in the original definition)

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's investigate the behavior of J_n^{λ} .

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's investigate the behavior of J_n^{λ} .

Problem 22 Compute

$$(J_3^{\lambda})^l \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}^l \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- 3. ..,..
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's investigate the behavior of J_n^{λ} .

Problem 22 Compute

$$(J_3^{\lambda})^l \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}^l \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Answer:

$$\begin{bmatrix} l\lambda^{l-1} \\ \lambda^l \\ 0 \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Let's investigate the behavior of J_n^{λ} .

Problem 22 Compute

$$(J_3^{\lambda})^l \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}^l \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Answer:

$$\begin{bmatrix} l\lambda^{l-1} \\ \lambda^l \\ 0 \end{bmatrix}.$$

(Aside: doesn't it remind you of derivatives?)

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Pictorially:

Overview

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Overview

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Overview

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Overview

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Problem 23 What angle does this make with the x-axis, as $l \to \infty$?

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Problem 23 What angle does this make with the x-axis, as $l \to \infty$?

Answer:

$$\lim_{l \to \infty} \cos^{-1} \left(\frac{n\lambda^{n-1}}{\sqrt{(n\lambda^{n-1})^2 + (\lambda^n)^2}} = \frac{n}{\sqrt{n^2 + \lambda^2}} \right) = \cos^{-1}(1) = 0.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, if you compute

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, if you compute

$$(J_3^{\lambda})^l \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}^l \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

Now, if you compute

$$(J_3^{\lambda})^l \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}^l \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

You get

$$\begin{bmatrix} (l(l-1)/2)\lambda^{l-2} \\ l\lambda^{l-1} \\ \lambda^l \end{bmatrix} \propto \begin{bmatrix} 1 \\ O(\frac{\lambda}{n}) \\ O(\frac{\lambda^2}{n^2}) \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

• A Simple Form

Now, if you compute

$$(J_3^{\lambda})^l \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}^l \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

You get

$$\begin{bmatrix} (l(l-1)/2)\lambda^{l-2} \\ l\lambda^{l-1} \\ \lambda^l \end{bmatrix} \propto \begin{bmatrix} 1 \\ O(\frac{\lambda}{n}) \\ O(\frac{\lambda^2}{n^2}) \end{bmatrix}.$$

Just as above, as $l \to \infty$, the angle with x-axis moves toward zero.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency

A Simple Form

Now, if you compute

$$(J_3^{\lambda})^l \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}^l \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

You get

$$\begin{bmatrix} (l(l-1)/2)\lambda^{l-2} \\ l\lambda^{l-1} \\ \lambda^{l} \end{bmatrix} \propto \begin{bmatrix} 1 \\ O(\frac{\lambda}{n}) \\ O(\frac{\lambda^{2}}{n^{2}}) \end{bmatrix}.$$

Just as above, as $l \to \infty$, the angle with x-axis moves toward zero. Conclusion: J_n^{λ} "pushes" all the generalized eigenvectors down (asymptotically) to a true eigenvector.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

The most celebrated and powerful result of linear algebra is now in reach.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

The most celebrated and powerful result of linear algebra is now in reach.

Theorem 4 (The Jordan Normal Form) Given any matrix A, there is an invertible matrix S such that $A = SDS^{-1}$, where

$$D = \begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}.$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

The most celebrated and powerful result of linear algebra is now in reach.

Theorem 4 (The Jordan Normal Form) Given any matrix A, there is an invertible matrix S such that $A = SDS^{-1}$, where

$$D = \begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}.$$

I.e.: in the right basis, all matrices are of block-diagonal form, where the blocks are sums of constant and standard nilpotent matrices.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

The most celebrated and powerful result of linear algebra is now in reach.

Theorem 4 (The Jordan Normal Form) Given any matrix A, there is an invertible matrix S such that $A = SDS^{-1}$, where

$$D = \begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}.$$

I.e.: in the right basis, all matrices are of block-diagonal form, where the blocks are sums of constant and standard nilpotent matrices.

D is the as-diagonalized-as-possible version of A.

Overview

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

$J_{n_1}^{\lambda_1}$	0	0	• • •	0 -
0	$J_{n_2}^{\lambda_2}$	0	• • •	0
:				:
	• • •		0	$J_{n_k}^{\lambda_k}$.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- EigenbasesBehavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- 3. ..,.
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

$$\begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}$$

If A is actually diagonalizable, $n_i = \text{block size } = 1$, λ_i are actual eigenvalues; rows with same eigenvalues collect into eigenspaces.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Eigenbases
- EigenbasesEigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

$$\begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}$$

If A is actually diagonalizable, $n_i = \text{block size } = 1$, λ_i are actual eigenvalues; rows with same eigenvalues collect into eigenspaces.

In general, λ_i are generalized eigenvalues and like-valued blocks collect into *generalized* eigenspaces.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

 $\begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}$

If A is actually diagonalizable, $n_i = \text{block size } = 1$, λ_i are actual eigenvalues; rows with same eigenvalues collect into eigenspaces.

In general, λ_i are generalized eigenvalues and like-valued blocks collect into *generalized* eigenspaces.

Restated,

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

 $\begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}$

If A is actually diagonalizable, $n_i = \text{block size } = 1$, λ_i are actual eigenvalues; rows with same eigenvalues collect into eigenspaces.

In general, λ_i are generalized eigenvalues and like-valued blocks collect into *generalized* eigenspaces.

Restated, all vectors in a given J-block correspond to a single true eigenvector with eigenvalue λ

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- EigenbasesEigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

 $\begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}$

If A is actually diagonalizable, $n_i = \text{block size } = 1$, λ_i are actual eigenvalues; rows with same eigenvalues collect into eigenspaces.

In general, λ_i are generalized eigenvalues and like-valued blocks collect into *generalized* eigenspaces.

Restated, all vectors in a given J-block correspond to a single true eigenvector with eigenvalue λ and multiplicity n_i .

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

$$\begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}$$

If A is actually diagonalizable, $n_i = \text{block size } = 1$, λ_i are actual eigenvalues; rows with same eigenvalues collect into eigenspaces.

In general, λ_i are generalized eigenvalues and like-valued blocks collect into *generalized* eigenspaces.

Restated, all vectors in a given J-block correspond to a single true eigenvector with eigenvalue λ and multiplicity n_i .

Problem 24 In the above terms, how many true eigenvectors does D have?

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

 $\begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}$

If A is actually diagonalizable, $n_i = \text{block size } = 1$, λ_i are actual eigenvalues; rows with same eigenvalues collect into eigenspaces.

In general, λ_i are generalized eigenvalues and like-valued blocks collect into *generalized* eigenspaces.

Restated, all vectors in a given J-block correspond to a single true eigenvector with eigenvalue λ and multiplicity n_i .

Problem 24 In the above terms, how many true eigenvectors does D have?

Answer: k = number of blocks.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- EigenbasesBehavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Donavioral Ligori / maryolo
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

$$D = \begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

$$D = \begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}$$

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Eigenbases
- Eigenbases
- EigenbasesBehavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- 3. ..,.
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

$$D = \begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}$$

The final behavioral analysis:

Generalized eigenvectors get pushed "up" their J-block, asymptotically collapsing to a corresponding true eigenvector.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

 $D = \begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}.$

- Generalized eigenvectors get pushed "up" their *J*-block, asymptotically collapsing to a corresponding true eigenvector.
- Eigenvectors of real eigenvalues get stretched.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

$$D = \begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}.$$

- Generalized eigenvectors get pushed "up" their J-block, asymptotically collapsing to a corresponding true eigenvector.
- Eigenvectors of real eigenvalues get stretched.
- Eigenvectors of complex eigenvalues get rotated and stretched.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

$$D = \begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}.$$

- Generalized eigenvectors get pushed "up" their J-block, asymptotically collapsing to a corresponding true eigenvector.
- Eigenvectors of real eigenvalues get stretched.
- Eigenvectors of complex eigenvalues get rotated and stretched.
- Collapse, dilation, and rotation rates controlled by eigenvalues.

Overview

More Linear Algebra

- Matrices Represent ALOT
- The Main Point
- A Practical Problem
- Commutativity
- Commutativity
- Commutativity
- Rotation Matrices
- Rotation Matrices
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Commutativity
- Eigenbases
- Eigenbases
- Eigenbases
- Behavioral Eigen-Analysis
- Nilpotency
- Nilpotency
- Nilpotency
- Nilpotency
- A Simple Form

$$D = \begin{bmatrix} J_{n_1}^{\lambda_1} & 0 & 0 & \dots & 0 \\ 0 & J_{n_2}^{\lambda_2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & J_{n_k}^{\lambda_k} \end{bmatrix}.$$

The final behavioral analysis:

- Generalized eigenvectors get pushed "up" their J-block, asymptotically collapsing to a corresponding true eigenvector.
- Eigenvectors of real eigenvalues get stretched.
- Eigenvectors of complex eigenvalues get rotated and stretched.
- Collapse, dilation, and rotation rates controlled by eigenvalues.

These are the only possible behaviors of a linear system.