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Derivation of the Conditional Density Equation (CDE) for systems with possibly correlated noise.
This is inspired by #9 from p. 111 of the notes for ES 203. We have the system

dr = axdt + dw + budt; dy = xdt + dv.

where dw, dv are indepedent Brownian motions and o € {—1, —2}. We’re suppose to do system identification
for o in various circumstances. First, let’s assume that u© = 0: we are now to calculate the conditional
probability for propating estimate of a. To do that, we use the unnormalized conditional density equation
for the system («, ). Let p(a,x,t) denote the conditional density distribution conditioned on y. Then let
us assume that p(—1,z,t) and p(—2,z,t) are both gaussians for all time, a fair assumption in light of the
fact that the initial condition is known to be gaussians for each. Hence, write

P(_]., z, t) — eal(t)z2+b1(t)z+cl(t)

and
p(—2,2,t) = eaz(t)z2+b2(t)z+cz(t).

In this case, the FP operator is:
adp 10%p 13}32
20r 20z 2
so the conditional density equation yields the six equations (three for each value of )

1 . d 1
d1:2a%—§; b1:2a1b1—2a1+d—‘:{; élzib%+a1—b1
and

. 1 . dy 1
a2:2a§—§; b2:2a2b2—4a2+a; 02:§b§+a2—2b2

where all these are functions of time. These are the propagation rules for p. Using the formulae that we say
in class relating the a,b to mean and variance, the initial conditions for the a;,b; are set at

@(0) = ax(0) =~
h(o) =00 = 23

where £(0),0(0) are the mean and variance of the initial gaussians. The initial conditions for the ¢; are set
at
c1(0) = 2(0 = —in(2)

because the a priori probabilities are % for both values.
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Now,
plat) = [ otz s,
So we can compute this for each value of a easily by “completing the squre” so to speak.
/ea(t)x2+b(t)x+c(t)dm — ec(t) /ea(t)m2+b(t)xdm

_ o2 / o~ Vmale- 2

. 1
:ec(t)*ZTzigil o /eﬂfdy @

—a(t

_ [ 2T -5
—a(t)

Hence we propagate a;, b;, ¢; for i = 1,2 accoring to the six equations above starting at those given initial
conditions. Then we compare the value of

b2 (t)
da;(t)

27 eci (t)—
—a;(t)

at any given time, and whichever one is bigger, that is the one the the data indicants is the rate value of the
system.
We can easily see that the mean Z; for the value «a; is given by —
condition mean is given by
1 b (t)  ba(t)

_2(a1(t) az(t))'

The next thing that we’re supposed to do is calculate the conditional probability update equations for o
in the case that u(t) = k(t)z(t) where z obeys the stochastic equations

b;
2a; °

Hence in terms of the a,b, the

B(t) =& + a9 =

dz = —[(t)zdt + v(t)dy.

This system can be rewritten as

g 1 0

What we want to do is find the density for the subsystem

R e A [HER T P
conditioned on observation by y.

We cannot use the usual conditional density equation for this system, because there is a correlation
between the noise in the signal and the noise in the observation (that is, there is dv in both). So we will
take a slightly alternate approach.

Let p(a, z, z,y) be the density distribution. Then

pla,z, 2ly) =

pla) = //7p(a;)ﬂ(lg;)z,y) dzdz.

Hence
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One way to solve this problem is to compute the joint distribution p(a, x, y, z), then integrate out z, y, sum
up over a to compute p(y), then perform the operation given above. We can compute the joint distribution
by solving according to the Fokker Planck equation for the joint system:

pr(a,z,2,y) = —a(rR), — bk(t)zp. — y(t)zp. + B(t)(2R). + zpy + %(Vz’p + 2py:) o
= (B(t) — a)p — (o + bk()2)pe + (B(1)z ~ 1(D))p= + 29, 5(V0 + 20,:).

This procudure is to propagate the FP equation for the joint system, then integrate, divide, and integrate
to find the formula for p(a). However, we can also derive a conditional density type equation for the case
of correlated noise. I will show how to do this for a scalar system, but the result will be the same for any
system. To do this, consider

& = f(z)dt + g(z)dwy + crdws

observed by
dy = h(z)dt + xdv + cadws.

Then (. 5(0))
pl,y(t
plely(t)) = ===
p(y)(1)
We will derive an unnormalized differential equation for p(z|y(¢)). That is, we will not use the normalization

by p(y)(t). So first off by the chain rule

Op(z,y(t)) _ OR(x,y) . OR(z,y) dy
ot ot dy  dt

in which % signifies the Stratonovic differential (remember, with stratonovic calculus, we can use regular
calculus rules such as the chain rule!). We use Fokker-Plank to expand the first term, changing notation for
ease.! This yields:

op(x,y(t d
@®) _, L dy
ot dt (3)
1 d
= Ly[p] = h(z)Ry + §(X2 + cg)ﬂyy + C1C2Pay + Ryd_z-
Now, the crucial point is that
Ok _ ()R
oy

as can easily be seen via the same calculation done in the notes for R(y|z) in general. Hence

1 d
pr = La[p] = h*(2)p + Sh*(x)p + b/ (2)p + ch(w)po + h(w)pd—‘z

which becomes

_ LY RVISC SN N ' 9 dy
pr = [Le + 17 (@)(56 + 5x° = Dlp + crca[l (@) + h(w) 5 ]p + hx) o p-

Note that this reduces directly to the regular conditional density equation when either ¢; or ¢, is zero,
that is, the signal and observation noises are uncorrelated with standard observation noise.
So now we can simply plug our original situation into a similar calculation (now with correlation between

1Meaning, using Ly to refer to the FP operator for a system f and notation p; to denote differentiation of p(x,y,...) with
respect to x.
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y and z noises) to get

1 d 1 d
pt(a,a:,z|y) = [La,z,z - 51'2]/) + h(l')pd_:,; + Pyz = [La,z,z - §$2]p + l‘d—ip +xp..

Now

Lo = (B0) = @)p = (@ + BK()2)ps + ()2 = 1(02)ps + 5 (pea + 22).

So the goal now is to plug into the modified conditional density equation something of the form
plai, z,2) = expla;(t)x? + bi(t)rz + c;(1)2? + d;(t)x + e;(t)z + fi(t)}

for i = 1,2. Then as above we get 12 differential equations (6 for each value ;) relating the a;(t), ..., fi(¢).
Then, we integrate out the z, z in the expression and get unnormalized p(«,t) equations. Propogating these
along the 12 differential equations and comparing, we take which ever one is bigger at any given moment,
and that is the value of a indicated by the obserations up to that time. Here, I will simply note that this
is the procedure, and not actually do the (long and laborious) calculation. However, the result provided
here is quite general, and represents a simple and clean way to create the conditional density equation with
less restrictive assumptions than those seen in the literature that I am aware of (meaning, Prof. B, his
students’ papers, the Wonham 1960 paper, and the books on stochastic control and differential equations in
the McKay Library).



