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Abstract

We describe procedures for creating e�cient spectral representations for

color. The representations generalize conventional tristimulus representations,

which are based on the peripheral encoding by the human eye. We use

low-dimensional linear models to approximate the spectral properties of surfaces

and illuminants with respect to a collection of sensing devices. We choose the

linear model basis functions by minimizing the error in approximating sensor

responses for collections of surfaces and illuminants. These linear models o�er

some conceptual simpli�cations for applications such as printer calibration; they

also perform substantially better than principal components approximations for

computer graphics applications.

1 Introduction

Current dogma in color science emphasizes the distinction between the physical
variables of image formation and the perceptual variables of color appearance. Color is
a psychological phenomenon, of course; but we must not forget that color also serves to
estimate the physical factors of image formation. In this and related papers, we
propose color representations and techniques for computing with them that
incorporate the physical factors of image formation accurately and naturally.
Incorporating physical variables explicitly in color representations leads to more
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realistic imagery in computer graphics and provides a sound basis for inferring the
physical variables as part of conventional colorimetry.

The high dimensionality of surface and illuminant spectral functions poses a challenge
to their inclusion in color image representations. In recent years there has been interest
in �nding e�cient, low-dimensional linear representations of surface re
ectance and
illuminant spectral power distribution functions. E�ciency is essential if we are to
succeed in creating useful spectral representations of color information. E�cient linear
representations have potential applications for rendering in computer graphics and for
material estimation in computer vision.

Linear models have two useful properties. First, linear models o�er a compact
description of the data. For example, Parkkinen et al. [1] recently measured more than
1200 Munsell chips at a 5nm sampling interval over the wavelength range from 400nm
to 700nm (61 numbers/samples). Parkkinen found that the re
ectance data can be
represented with no loss of precision using a small number of basis functions (8
numbers/sample). Their measurements con�rmed earlier studies of surfaces by Cohen
[2] and Maloney [3].

But e�ciency is only part of the motivation for using linear models; many alternative
compression schemes would do just as well, or better. A second important reason is
that linear models preserve the simplicity of graphics and estimation algorithms.
When sensor encoding is linear with incident light, (as in the human photopigments or
CCD sensors) linear models �t well into the computational algorithms for material and
illuminant estimation algorithms and for computer graphics calculations.

2 The Main Idea

Classically, linear models are built by approximating the spectral functions in the
wavelength domain (e.g. [4] [2]). For example, suppose we build an d-dimensional
linear model to approximate the surfaces in a collection. The linear model will consist
of a set of d-basis functions; we approximate each surface re
ectance function, S(�), in
the collection as the weighted sum of d-basis functions,

S(�) �
i=dX
i=1

�iSi(�) : (1)

The basis functions, Si, are chosen to minimize the error

X
S

Z
[S(�)�

i=dX
i=1

�iSi(�)]
2d� : (2)
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As the dimension, d, of the linear model increases, the approximation improves. The
basis functions that minimize the quantity in Equation 2 can be found using many
standard techniques, all of which can be derived from the singular value decomposition
of the matrix whose columns contain the surface re
ectance data.

For many applications, however, a linear model designed to minimize the error in
Equation 2 is inappropriate. For example, suppose we want to represent the spectral
re
ectance functions of print samples in order to predict the response of a 
atbed
scanner. Scanner sensors do not respond equally well to all wavelengths; the
conventional minimization based on Equation 2 is ill-suited for predicting the scanner
responses. If we want a linear model that helps us predict the scanner response, then
we should derive our basis functions by minimizing the error in the predicted scanner
responses.

As a second example, suppose we design linear models to represent surface and
illuminant spectral functions in computer graphics simulations. The graphics
simulation objective is to predict the initial human encoding (e.g. tristimulus
coordinates) expected from various surface-illuminant combinations. Linear models for
surface and illuminant functions derived by minimizing Equation 2 do not perform as
well as models derived by minimizing errors of the tristimulus encoding.

In the computer graphics example, there is an inter-dependency between the surface
and illuminant collections as well. If the collection of illuminants used in the
simulations have no energy in some spectral range, resources devoted to representing
the surface re
ectance functions in that range are wasted. Accurate representations of
the surface where there is no illuminant energy reduce the error in 2, but they do not
improve the quality of the graphics simulation. In some cases, then, we wish to de�ne
linear models for surface and illuminant collections simultaneously.

In this paper we describe how to build linear surface and illuminant models that
simultaneously take into account the properties of the surface collection, the illuminant
collection and the sensor responsivities. In section 3 we describe the general principles
of our analysis. In section 4 we show how to to derive linear models for a collection of
surfaces. In section 6 we show how to derive linear models simultaneously for
collections of surfaces and illuminants. The techniques we introduce are adapted from
numerical methods used in the statistical literature where they are referred to as
one-mode, two-mode, or n-mode analyses [5] [6] [7] [8]; we will retain the name here.

3 Background

We will use matrix algebra to describe the relationship between surface re
ectance
functions, illuminants spectral power distributions, and sensor responses. The matrix
products relating these quantities are illustrated in tableau form in Figure 1. In our
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calculations, we represented functions of wavelength at Nw = 31 sample points, ranging
from 400nm to 700nm in 10 nm steps. The formulae we use apply to materials without
phosphoresence or 
uorescence.

The entries of the surface re
ectance function vector, s, are the re
ectance values at
the Nw sample wavelengths. We assume that the geometric properties of the image,
(angle with respect to the illuminant, specularity, etc.) are incorporated within the
spectral re
ectance function. We represent the illuminant by a diagonal matrix, E,
whose entries contain the illuminant's spectral power distribution at the sample
wavelengths. The sensor responsivities at the sample wavelengths, Xi(�), are de�ned
by the three columns of the matrix X.

We compute the sensor responses, r, from the matrix product r = XtEs. Generally, we
compute the sensor responses for many surfaces using a single illuminant. It is
convenient to de�ne the system's surface transfer matrix, TE = XtE.

r = TEs (3)

The sensor responses are the projections of the surface re
ectance function onto the
rows of the surface transfer matrix, TE. From standard theorems in linear algebra,
when the dimension of r is smaller than the dimension of s, we can express s in two
orthogonal parts, s = ŝ+ s?. The vector s? is orthogonal to the rows of TE.

0 = TEs
? (4)

The vector ŝ falls within the row space of the transfer matrix. We can write ŝ as the
weighted sum of the rows of TE. We denote the vector of weights as w.

ŝ = TE
tw (5)

The three-dimensional vector w is an e�cient description of the part of the surface
re
ectance function falling within the linear subspace de�ned by the columns of TE

t.
This is the only part of the surface re
ectance function that in
uences the device
response. For example, when a human observer views a surface under a D65 illuminant
the photopigment absorption rates measure the projection of the surface re
ectance
function onto the three-dimensional subspace de�ned by the XY ZD65 functions. If we
know the tri-stimulus values associated with the surface, we can use the pseudo-inverse
to recover this component of the surface re
ectance function exactly [9].

r = TEs

ŝ = TE
t(TETE

t)
�1
r : (6)
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The sensor data from a single illuminant tell us nothing about the orthogonal
component, s?. But, we may have a priori information about the distribution of
surface re
ectance functions. Or, we may know more by having experience with the
object under several illuminants [10] [11].

The sensor responses only inform us about the value of the surface re
ectance function
within the linear subspace de�ned by the rows of the surface transfer matrix. It follows
that to predict the sensor responses a linear model must represent only the portion of
the surface re
ectance function in the row space of the transfer matrix.

One way to see this result is to recall that the surfaces s and ŝ di�er only by a term
that is orthogonal to the row space. From Equations 5 and 4 we see that pairs of
surfaces that di�er only by this orthogonal term are surface metamers with respect to
a device with surface transfer function TE.

TEs = r = TE[ŝ+ s?] = TEŝ (7)

Only the portion of the surface re
ectance in the linear subspace in
uences the sensor
response

r = TEŝ = (TETE
t)w (8)

The methods in this paper are elaborations of the observation that the sensor
responses depend only upon the low-dimensional vector, w (Equation 8). Hence, to
predict the sensor responses for a device with surface transfer function, TE, we can use
any linear model that spans the same subspace as the rows of TE.

Several investigators have used related methods. Takahama and Nayatani [12] used the
pseudoinverse to discover metamers. Cohen and Kappauf develop a formal argument
that comes to the same conclusion as the previous few paragraphs. Their analysis
treats the system input as light at the cornea rather than the surface re
ectance. They
call the value returned by the pseudo-inverse the fundamental metamer [13] [14] [15].
Trussell [16] reviews the use of linear algebraic methods in a variety of color systems
applications.

4 Spectral Representations for Surfaces

4.1 Introduction

Many applications require that we represent the surface re
ectance functions with
respect to several di�erent transfer functions. For example, print samples are measured
by scanners with di�erent transfer functions; computer graphics applications render
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the same surfaces under various illuminants. In this section we extend the basic logic
in the previous section to this application.

Suppose we want to build a d-dimensional linear model of the Ns surface re
ectances
in a collection of print samples. In this section we will use an example of �nding a
representation of the print samples that permits us to predict a 
atbed scanner
response and the human tristimulus values XY ZD65.

Call the surface transfer matrix of the scanner TE and the surface transfer matrix for
the human eye under illuminant D65 TH. From the discussion in section 3, we know
that only the portion of the re
ectance functions in the row space of TE in
uences the
scanner response. Similarly, the row space of TH de�nes the relevant portion of the
re
ectance in determining the tristimulus values. It follows that a linear model to
predict the responses of both scanners exactly requires, at most, six dimensions to span
the rows of the two transfer matrices See Takahama and Nayatani [12] and Burns et al.
[17] for related analyses.

It may be possible, however, to use fewer than six dimensions. For example, if the
scanner has the same responsivities as the human eye under illuminant D65, we do not
need to increase the dimension of the linear model at all. Somewhat more generally, if
the scanner responsivities are within a linear transformation of XY ZD65, we need not
increase the dimension of the linear model. Finally, if the scanner responsivities are
nearly within a linear transformation of one another, there may be little advantage in
increasing the dimension of the linear model.

4.2 Linear Models as Projections

Selecting a linear model for surface re
ectances de�nes a map from an arbitrary
surface re
ectance to an approximation; the approximation must fall within a linear
subspace. One way to conceive of the construction of a linear model is as follows.

We de�ne a d-dimensional model (see Equation 1) by selecting a set of basis functions.
Place the basis functions in the columns of a matrix, Lb. Given a spectral re
ectance,
s, we choose the linear model weights by minimizing the least-squared error in

s � Lbw : (9)

The vector w that minimizes the vector length, k s� Lbw k, is

w = L+
b
s (10)

where L+
b
is the pseudo-inverse of Lb. We introduce the notation Ls = L+

b
and we call

Ls the sampling functions of the linear model. Figure 2 shows the mapping from the
original surface re
ectance function to its approximation, ŝ = LbLss, in matrix tableau.
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Notice that only the subspace spanned by the basis functions, and not the basis
functions themselves, determines the precision of the approximation. Suppose A is a
d� d invertible linear transformation. Then the sampling and basis functions ALs and
LbA

�1 de�ne the same linear model as Ls and Lb. Since the choice of sampling and
basis functions is arbitrary up to a linear transformation, we can select an orthonormal
set of basis functions, Lb. By choosing the basis functions to be orthonormal, we
obtain so-called self-inverting sampling and basis functions, i.e. Lb

t = Ls (e.g. [18]).
The search for self-inverting sampling and basis functions has played an important role
in the work of some of our colleagues in biological spatial vision; they argue that
self-inversion makes it easier to interpret the meaning of the weights and relate theory
to the performance of retinal neurons.

Finally, notice that the mapping from the original surface re
ectance vector to its
approximation, PD = LbLs, is a projection, PD = PD

2.

4.3 Selecting the Minimization Equation

If we replace the continuous functions of wavelength with sampled functions, stored as
vectors, then minimizing Equation 2 is equivalent to selecting a projection operator to
minimize

Epc =k S�PDS k (11)

where S is the matrix whose columns contain the surface re
ectance functions in our
sample set and the norm operator, k k, is the sum of the squared entries of the matrix.

In the applications we are considering, however, we seek to minimize a di�erent
quantity: the error in predicting the sensor responses.

Eom =k TS �TPDS k (12)

The matrix T in Equation 12 includes the sensor responsivities of all of the input
devices. For example, if we are designing a linear model with respect to two color
devices, then T consists of six rows consisting of all the sensor responsivities. If the
linear model is designed with respect to two color devices and one monochrome device,
then T will have seven rows, as illustrated in Figure 3.

The linear models that minimize the quantities in Equations 11 and 12 can be quite
di�erent. But the numerical procedures for deriving the d-dimensional projection to
minimize either quantity is the same. Equation 11 is ordinarily solved using some
variant of the singular value decomposition, such as principal components or the
eigenvectors of the covariance matrix. We can use the singular-value decomposition to
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minimize the quantity in Equation 12 as well. To see this, notice that we can
re-express Equation 12 as

TS � TŜ = (TLb)(LsS) (13)

where Ŝ is the matrix containing all of the linear model approximations, ŝ, in its
columns.

Equation 13 shows that we are seeking to approximate the sensor data, R = TS by
the product of two rectangular matrices. From standard theorems we know that we
can use the singular value decomposition, applied to the sensor responses, to obtain the
best least-squared error approximation. We factor the sensor responses, R into three
matrices, R = UDVt. Suppose the matrix R is r � c and m = min(r; c). Then D is
square (m�m) and diagonal with entries di such that di � di+1. The matrices U and
V are r�m and c�m and their columns are orthonormal. We obtain a d-dimensional
approximation of R by zeroing all but the �rst d diagonal values to create Dd. This
yields the approximation

R �
�
Ud 0

� Dd 0
0 0

! 
Vd

t

0

!

=
�
UdDd

� �
Vd

t
�

(14)

Once we zero these entries only the �rst d columns of U and V are relevant. So we can
approximate the data by UdDdVd

t (e.g. [9] [19]).

We set UdDd equal to TLb and Vt

d equal to LsS. Thus, the �rst d rows of Vt de�ne
the weights of the surfaces in the linear model. We call this rectangular matrixW.

Finally, we recover the matrices Ls and Lb as follows. Knowing the surface
re
ectances, S and the weights,W, we can solve the for the sampling functions from

LsS =W : (15)

4.4 An Example Calculation

General measurements conditions. We have created linear models for the
surface re
ectance functions of the Macbeth Color-Checker [20]. We created the
one-mode linear model with respect to a commercially available scanner and a human
observing the surfaces under a di�use D65 illuminant. The principal components model
does not depend on specifying device sensors.

The Macbeth Color-Checker consists of 24 uniform patches, separated by a black
border. The scanner measurements consist of three color sensor reponses for the
twenty-four patches, ranging between 0 and 255. Within each color patch there is a
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distribution of scanner responses owing to non-uniformities in the sample and sensors
as well as noise. The standard deviations within a single Macbeth Color-Checker patch
are approximately 0.5 for the darker surfaces up to 2.0 for the lighter surfaces.

We have computed the XY ZD65 values for these color patches and scaled them to fall
within the same range. Because these data are synthesized, the mapping from surface
re
ectance function to human tristimulus values is precisely linear. The mapping from
the re
ectance function of the Macbeth surface to the scanner responses is not
precisely linear; we will quantify the depatures from linearity after describing our
analysis in some more detail below.

The scanner spectral responsivity di�ers from the XY ZD65 functions. We can infer
this from the fact that the best linear regression between the scanner rgb values to the
XY ZD65 values di�ers by a root-mean-squared error of about (7.84, 5.84,3.43) units for
the r,g and b values respectively. This error is considerably larger than the
measurement error of between 0.5 and 2.0 units.

To create the principal components, we build the matrix, S, whose columns contain
the surface re
ectance functions of the Color-checker. The principal components of S
provide the best approximation to the surface re
ectance functions relative to the
minimization in Equation 11. The �rst three principal components of the Macbeth
Color-Checker are plotted in part (a) of Figure 4.

To perform the one-mode analysis, we create the 6 � 24 matrix, R, containing the
scanner responses to the twenty-four surfaces and the human visual system XY ZD65

values. We calculate the one-mode linear model weights from the singular value
decomposition of R, as described above.

We derive the linear model sample functions, Ls, by using the known surface
re
ectance functions. We have measured the surface re
ectance functions of our
Macbeth color-checker using an instrument that is accurate to about one percent. We
can approximate the measurements to within the precision of our instrument by
factoring the matrix S using the singular value decomposition and replacing the
diagonal elements beyond the eighth with zero. This creates an approximation to the
data, Ŝ � S. Hence, to within the precision of our measurements, then, there are eight
independent surfaces in the Macbeth color-checker. Following the common practice to
reduce the e�ects of noise, we use Ŝ in the matrix inversion steps below. We plot the
one-mode sampling functions in part (b) of Figure 4.

Notice that the principal components linear model has large values at the spectral
extremes even though the scanner and eye are insensitive at these wavelengths. The
one-mode basis functions allocate their variance in the visible part of the spectrum.

Figure 5 compares how well the two linear models predict the device responses. We
used the linear models with dimensions d = 2; : : : ; 6, and we calculated the best linear
regression between the linear model surface weights and the observed scanner data. As

9



the linear model dimension increases, the quality of the �t improves, converging to the
best value at a dimension of six (the number of sensors).

Were the sensor responses of both devices linear, a six dimensional linear model could
predict the data perfectly. For the six dimensional one-mode representation, all of the
error is due to the scanner non-linearity. The error in the principal components
representation exceeds the one-mode error in every comparison. Moreover, for the six
dimensional model the one-mode model predicts the XYZ values accurately while the
principal components representation is worse than the four-dimensional one-mode
model.

The reason the principal components model fares so much worse than the one-mode
model at low dimensions is because the scanner is quite sensitive to the third and
fourth principal components. We can demonstrate this as follows. We have estimated
the scanner surface transfer function by solving the equation R = TEŜ; then, we can
use TE to predict the vector length of the scanner rgb responses to the principal
components of the surface re
ectances. The vector length of the scanner response to
the third principal component exceeds the response to the �rst. Although the third
principal component does not play a signi�cant role in minimizing the quantity in
Equation 2, it does play a signi�cant role in minimizing the quantity in Equation 12
(see also [21]).

These calculations illustrate some of the trade-o�s involved in using the one-mode
representation. The system designer may feel that accurate representation of the
scanner responses is much less important than accurate representation of the human
observer under XY ZD65. In that case, the designer may wish to use the linear model
de�ned entirely by the rows of TH. In selecting the XY ZD65 functions as the linear
model, the best global linear transformation to predict the scanner responses has an
RMSE error of 6.00, worse than either the principal components or one-mode
representations. The one-mode representation balances the errors more equally. The
designer may compromise between these extremes by adapting the one-mode method
to use conventional weighted least-squares �tting procedures to emphasize one device
or another.

We can generalize our procedure by using other error measures. For example, the
designer may wish to minimize the scanner responses with respect to mean squared
error, but to minimize the visual responses with respect to a CIE metric. Such
minimizations are possible using iterative search procedures.

5 Intermediate Discussion

Geometric Comparison of One-Mode and Principal Components. The
one-mode linear model approximates sensor responses better than the principal
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components approximation; because one-mode model is designed to minimize the error
in sensor responses. Equations 11 and 12 provide an algebraic comparison between the
one-mode and principal components minimizations.

Figure 6 illustrates the di�erence between the two linear model approximations
geometrically. We represent surface vectors by their endpoints in the plane. We
represent the sensor vector as a line in the same plane. We can calculate the sensor
response to a surface by drawing the perpendicular between the surface vector
endpoint and the sensor line. The distance from the origin to the point where the
perpendicular intersects the sensor line is the size of the sensor response to the surface.

The �rst principal component is the vector with the smallest average distance from all
of the surface re
ectance endpoints; it will pass through the data cloud. Suppose we
approximate a surface, s, by its projection onto the principal component vector. As
Figure 6 shows, the principal component approximation does not have the same sensor
response as s. The principal components vector is chosen without reference to the
sensor vector. This is the source of error in using the principal components linear
model to predict the sensor responses.

When there is only a single sensor, the one-mode sampling function is the sensor line.
The one-mode approximation is ŝ, which falls along the sensor line. The vector s?,
which is perpendicular to the sensor line, joins the endpoints of ŝ and s. As Figure 6
shows, when there is only a single sensor a one-dimensional one-mode linear model
predicts the sensor response without error. When there are multiple sensors, the
one-mode analysis �nds a linear model vector that compromises between the best ŝ
associated with all of the surface and sensor combinations.

Related Work. We draw the reader's attention to a few papers that are closely
related to our work. First, Drew and Funt [22] perform an analysis that complements
ours. They use sensor responses to obtain least-squares estimates of the surface
re
ectance function, with the error measured in the wavelength domain. They describe
how to use the sensor responses to measure the portion of the surface re
ectance
function falling within the span of the �rst three principal components. Vrhel and
Trussell [23] use linear models of re
ectance functions to correct for illumination
changes. Brainard et al. [24] and Maloney [21] analyze the design of sensor
responsivities to reduce the e�ect of illuminant changes.
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6 Spectral Representations for Surface and

Illuminants

6.1 Introduction

In Section 4 we built spectral representations of the surface re
ectances using the
one-mode method; we did not model the other spectral components of the system. In
this section we consider how to obtain additional e�ciencies by modeling other
spectral factors.

For example, consider the problem of rendering a collection of surfaces under a
collection of illuminants. To render a surface under an illuminant requires calculating
the tristimulus values of each surface-illuminant pair. We can make the calculations
more e�cient by representing the illuminants with respect to a low-dimensional linear
model, just as we did for surfaces. In this section we describe a method for
simultaneously estimating linear models for the illuminant and surface terms. The
method is adapted from Magnus and Neudecker [6] and where it is called two-mode

analysis.

We calculate the tristimulus values of a simulated surface by multiplying a surface
re
ectance function times a matrix that de�nes the surface transfer function (see Figure
1). In computer graphics applications, the rows of the surface transfer function are the
product of the sensor responsivities and the illuminant spectral power distribution. If
the ith illuminant spectral power distribution in the illuminant collection is Ei(�), then
the �rst row of the surface transfer matrix is �x(�)Ei(�), the second is �y(�)Ei(�), and
the third is �z(�)Ei(�). We call the surface transfer matrix for illuminant Ei, TE

i
.

As we reviewed in Section 3, when there is only a single surface transfer matrix, TE1
,

the rows of the matrix serve as an exact linear model for the surfaces. If the graphics
application uses a collection of illuminants, we can stack the rows of all the surface
transfer matrices, TE

i
, into a single large matrix, TE. We can calculate the tristimulus

responses to all of the surfaces under all of the illuminants from the matrix product

Rs = TES : (16)

When we organize the sensor data into the matrix, Rs, we can derive a spectral
representation for the surface re
ectance functions. We call this organization of the
data surface format.

When the data are in surface format, each column contains the sensor responses to a
single surface viewed under all the di�erent illuminants. To �nd a linear model for the
illuminants, we re-organize the sensor data matrix, reversing the roles of the illuminant
and surface functions. We transform the data matrix so that each column represents
the sensor responses to a single illuminant, re
ected from all of the di�erent surfaces.
To re-organize the data we perform an operation very much like ordinary matrix
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transposition except that we tranpose the vector of tristimulus values (see Figure 7).
The vector transposition operation yields a new data matrix into illuminant format,
which we call Re. We can estimate a spectral representation of the illuminants using
one-mode analysis on the data matrix in illuminant format.

6.2 Algorithm De�nition

To build surface and illuminant linear models simultaneously, we use an iterative
algorithm. The algorithm uses the one-mode analysis, alternating between analyzing
the data in illuminant and surface formats. We can select the dimensions of the
one-mode approximation for the surface and illuminant functions independently.

To describe the algorithm, we need a few extra symbols. We useM to describe the
one-mode calculation; we use the symbol V to describe vector transposition (Figure 7).
We denote the surface weights and illuminant weights at the ith step of the iterative
algorithm as Si and Ei, respectively.

First, initialize the estimates for both surface and illuminant weights.

1. S0 =M(Rs).

2. E0 =M(V(RsS0
t)).

Having obtained initial estimates of the surface and illuminant enter the main iteration
loop.

1. Si =M(V(ReEi�1
t))

2. Ei =M(V(RsSi
t))

3. The R2 value between the observed and approximated sensor values is
guaranteed to be monotonic and non-decreasing as the algorithm iterates [7]. We
terminate the iteration loop when the R2 value increases by less than a criterion
amount. Otherwise, we continue the iteration.

Trussell [16] discusses the use of alternating projection techniques in the context of
other color-related applications.

6.3 Example Illuminant and Surface Calculation

We have calculated surface and illuminant two-mode linear models using the surface
re
ectance functions from a collection of 462 Munsell chips, measured by Kelly and
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reported by Nickerson [25]. We have used blackbody radiators (3K, 4K, 5K, 6K, 9K)
and CIE standard illuminants a, b, and c as illuminants. The illuminants and surfaces
were represented as 31 dimensional vectors representing lights from 400nm to 700nm at
10 nm intervals. The illuminant vectors were normalized to unit length; they are
plotted in Figure 8. We selected the linear models by minimizing the error in the CIE
standard observer's tri-stimulus values, XY Z.

Figure 9 compares the principal components linear models for the illuminants and
surfaces with the two-mode linear models. The top of the �gure contains the �rst three
principal components sampling functions of the surface and illuminant functions; the
bottom of the �gure contains the �rst three two-mode sampling functions. The
di�erences between the two-mode sampling functions and the principal components
functions arises mainly because the human eye is insensitive in the short- and
long-wavelength regions of the spectrum.

The two-mode analysis necessarily performs better at minimizing the squared error in
predicting the sensor responses. To evaluate whether the improvement is perceptually
salient, we plot the error using a perceptual error measure, the CIE �Eab. The bar
graph in Figure 10 is grouped into two parts. On the left we show the mean �Eab

error (bar height) and the quartiles (horizontal lines) for a two-dimensional illuminant
model and for two and three-dimensional surface models. On the right we show the
error for a three-dimensional illuminant model, again for two and three-dimensional
surface models. Errors less than three �Eab units are not visually signi�cant. The
two-mode representation performs signi�cantly better than the principal components
representation. The two-mode representation performs nearly perfectly for three
dimensional models of the surface and illuminant functions and better than the
principal components model everywhere.

7 Discussion

Linear Models for Devices. The two-mode analysis obtains e�ciencies beyond
the one-mode method by discovering structure in the matrices, TE

i
. The two-mode

procedure approximates these matrices as the weighted sum of a few matrices, a basis
set. The set of basis matrices de�nes a linear model for the observed surface transfer
matrices. Each matrix in the basis set is associated with a hypothetical device. The
surface transfer matrix of the hypothetical device combines the sensor responsivities
with one illuminant. The output of the real devices is the weighted sum of the outputs
of the hypothetical devices.

When the TE
i
matrices are all derived from one set of sensors, with only the

illumination varying, we can interpret the illuminant format weights of the two-mode
analysis as a linear model for the illuminants. When the surface transfer matrices
include more than one set of sensor responsivities, we can still apply the two-mode
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analysis. For example, suppose the surface transfer matrices describe a collection of

atbed scanners. We can then build a linear model that describes the outputs of all of
the 
atbed scanners as the weighted sum of outputs from a few hypothetical scanners.
In that type of application, we cannot interpret the two-mode weights as an
illumination model. Rather, the two-mode weights describe the conjuction of
illumination and sensor variation.

Related Work. A number of investigators have explored spectral representations of
surface re
ectances and illuminants using Gaussian quadrature (GQ) approximations.
GQ representations approximate surface re
ectance by using functions whose non-zero
values are limited to fall at a small number sample wavelengths [26] [27] [28].

For simple renderings, it appears that GQ approximations are signi�cantly less
accurate than the two-mode models [28]. But GQ approximations may be much easier
to use for computer graphics calculations of inter-re
ections. The proper architecture
for including inter-re
ection e�ects and spectral representations based on linear models
remains open. It may be necessary to build an ordered series of linear models, applying
them in turn for each inter-re
ection calculation. Or, it may be possible to build a
single linear model incorporating all of the inter-re
ection functions.

8 Conclusions

Ordinarily, tristimulus coordinates serve as the input for the psychological phenomena
of color appearance. Color appearance models begin at the sensor encoding and 
ow
forward towards psychological phenomena. In this paper we reverse the direction of
analysis. We conceive of the tristimulus coordinates as the output of the image
formation process. Spectral representations begin at the sensor encoding and 
ow
backwards to the image formation process.

If color perception serves to estimate the physical factors of image formation, then the
two directions for analyzing and representing color may be similar to one another.

The key to our analysis is the observation that tristimulus coordinates, or indeed the
sensor responses of any linear device, provide a measure of the color signal. Linear
sensor responses measure that part of the incident color signal that falls within the
subspace de�ned by the span of the sensors' color-matching functions. When the
illuminant is known, we can also use the sensor responses to measure that part of the
surface re
ectance function that falls within a subspace de�ned by the row space of the
surface transfer matrix (i.e. the product of the color-matching functions and the
illuminant spectral power distribution). In this paper we emphasize that the sensor
responses estimate the physical signal because we wish to develop closer ties between
perceptual color representations and the physical factors in image formation.
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We have described two applications for spectral representations of color information.
First, we used the one-mode method to construct linear models for surface re
ectances.
We have described an application of these representations to printer calibration. When
we wish to approximate sensor responses, the one-mode representation performs better
than principal components. Second, we used the two-mode method to derive surface
and illuminant functions simultaneously. Again, for predicting sensor responses,
two-mode models perform better than the principal components models.
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Figure Captions
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Figure 1: We group the surface re
ectance vectors s in the columns of a matrix S.
Similarly, we group the sensor response vectors r in the columns of a matrix R. Top:
The sensor responses are determined by the product of the surface re
ectance function
(columns of the rightmost matrix) times a diagonal matrix containing the illuminant
spectral power distribution and a matrix whose rows contain the sensor responsivities.
Bottom: We group the sensor matrix and illuminant matrix to de�ne a surface transfer
matrix.
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Figure 2: Linear models de�ne a mapping from the original surface re
ectance to an
approximation that falls in a subspace. We can conceive of the projection as a linear
sampling Ls followed by a basis reconstruction, Lb. The product, PD = LbLs is a
projection, i.e. PD = PD

2.
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Figure 3: We group the sensor responsivities into a single matrix, T. We group the
surface re
ectance functions in the collection into the columns of a matrix, S. The
sensor responses are equal to TS. We analyze the sensor responses to derive the one-
mode representation of the surface re
ectance functions.
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Figure 4: A comparison of the sampling functions for the principal components linear
model (top) and the one-mode linear model (bottom) used to describe the Macbeth
color-checker surfaces. The principal components representation is independent of the
sensors. The one-mode representation is chosen with respect to the sensors described in
the text.
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Linear Model Dimension

Comparison of Linear Models

R
M

S
E

(s
en

so
r 

er
ro

rs
)

3 4 5 6

2.0

4.0

6.0

XYZ

3 4 5 6

2.0

4.0

6.0 RGB

Figure 5: These bar graphs show the root mean squared error in predicting the sensor
responses using the principal components model (dark bars) and one-mode model (light
bars) for di�erent linear model dimensions. The top graph shows the errors for the
scanner data and the bottom graph shows the errors for the XYZ values.
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Figure 6: This �gure is a geometric interpretation of the one-mode linear model and the
principal components. The surfaces in the collection are indicated by their endpoints;
the sensor vector is indicated by a line. The sensor response to a surface, s, is found by
dropping a perpendicular from the surface vector endpoint to the sensor line. The �rst
principal component passes through the data points, minimizing the distance between
the vector and the data. The principal component approximation introduces error in
predicting the sensor response. The one-mode component is the same as the sensor line.
In this example, the one-mode approximation is ŝ, a vector on the sensor line. The
vector, s?, which is invisible to the sensor, is perpendicular to the sensor line and shown
added to the vector ŝ.
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Figure 7: This matrix tableau illustrates how to convert the data from the format
used for the one-mode analysis of surfaces (left) to the one-mode analysis of illuminants
(right). The operation is essentially a transpose, but it is applied to the rgb vectors of
data rather than to the individual elements.
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Figure 8: This �gure contains the spectral power distributions of the illuminants used
in our calculation. There are �ve blackbody radiators (3K,4K,5K,6K,9K) and three
CIE standard illuminants (a,b and c). The vectors representing the illuminants were
normalized to unit length.
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Figure 9: The upper graphs show the sampling functions for three-dimensional surface
and illuminant models using principal components methods. The lower graphs show the
sampling functions for the surface and illuminants using two-mode methods. The linear
models were built for a collection of 462 Munsell chips. The collection of illuminants is
described in Figure 8.
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Figure 10: Comparison of �Eab values for di�erent dimensions of the two-mode linear
model and the principal components linear model. The sensor data are the XYZ values
of Munsell chips rendered under the illuminants plotted in Figure 8. The �lled bars are
the principal component errors and the open bars are the two-mode errors. The height
of the bars de�nes the mean error from the 462 � 8 = 3696 illuminant-surface pairs.
The horizontal lines de�ne the twenty-�fth, �ftieth (mode) and seventy-�fth percentile
errors.
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