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ABSTRACT

In image acquisition, the captured image is often the result of the object being convolved with a blur function.
Deconvolution is necessary in order to undo the effects of the blur. However, in real life we may have very little
knowledge of the blur, and therefore we have to perform blind deconvolution. One major challenge of existing
iterative algorithms for blind deconvolution is the enforcement of the convolution constraint. In this paper we
describe a method whereby this constraint can be much more easily implemented in the frequency domain. This is
possible because of Parseval’s theorem, which allows us to relate projection in the space and frequency domains. QOur
algorithm also incorporates regularization of the estimated image through the use of Wiener filters. The restored
images are compared to the original and noisy blurred images, and we find that the restoration process indeed
provides an enhancement in visual quality.
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1. INTRODUCTION

The popularity of digital photography has increased tremendously over the last few years. In addition to facilitating
easy transmission and sharing of pictures, digitized photographs also allow us to make use of the ever-increasing
computational power available in image post-processing in order to enhance the quality of the final output images.
At the same time, this would also impact the design of cameras, as we may sacrifice some precision of the instruments
and instead rely on the post-processing to fine-tune the images. For example, we might not need to move the lens to
the precise position for focusing, but can correct for the error by digital restoration. Since it is rarely the case that
we know exactly the imperfection introduced into the image acquisition system, the challenge is to derive the object
as well as the blur directly from only one observation.

In imaging using a diffraction-limited system with incoherent light, the object and the image are related by!

gl(fz,fy):H(fzafy)gg(fzafy)a (1)

where G; is the normalized frequency spectrum of the image intensity i(z,y), G, is the normalized frequency spectrum
of the object intensity g(z,y), and H is called the optical transfer function (OTF). Noise is inevitably present in any
imaging system, and is customarily modeled as additive white Gaussian noise at the output. Taking equation (1)
to the space domain by inverse Fourier transforms, and including the contribution of noise, we have the convolution
equation

i(z,y) = h(=,y) * 9(z,y) +n(z,y), (2)

where h(z,y) is the inverse Fourier transform of H(f,, f,), and n(z,y) is the additive noise. Our deblurring challenge
is therefore a blind deconvolution problem, where we seek to deconvolve our observation i(z,y) to obtain a close
approximation to the object g(z,y) without an exact knowledge of the degradation h(z,y).

2. EXISTING APPROACHES

In the absence of noise, it has been shown that the blind deconvolution problem almost always has a unique solution
even without any prior knowledge of the blur or the object.? This is easiest to comprehend if we take the z-transform
of equation (2) while neglecting the noise term and obtain

1(21,22) = H(Zl,ZQ)G(Zl,Zg). (3)



The blind deconvolution problem can now be cast as a factorization problem: given a bi-variate polynomial I(z1, 22),
factorize it into two components H(z1,22) and G(z1, 22), neither of which is a constant. While this factorization
is not unique for one-dimensional signals because of the fundamental theorem of algebra*, it is unique for higher
dimensions up to a scaling factor except for contrived cases. Such factorization can theoretically be obtained by
looking at the zero-sheets of I(z1, 22); for more information and algorithms, the reader is referred to Refs. 3-5.

Unfortunately, all imaging systems contain noise, and they affect the unique factorization property in a non-
trivial way. Almost always I(z1,22) becomes not factorizable. If we seek only approximate solutions, they may
not be unique. Furthermore, zero-sheets are neither easy to visualize (since they are two-dimensional surfaces in a
four-dimensional space) nor efficient to compute. For instance, the algorithm provided in Ref. 4 has a complexity
of O(N*) for an image of size N x N, which creates a major problem as the image resolution in typical digital
photographs continues to rise rapidly.

Instead of this purely algebraic approach, most existing blind deconvolution algorithms are iterative in nature.
They have a common structure as follows®®:

1. Find an initial guess of the image g;

2. From this initial guess deduce the point-spread function h, imposing constraints on A such as positivity and
finite support;

3. From the new h, deduce the next estimate of the image g, imposing constraints on g such as positivity and
finite support;

4. Go back to 2 and iterate.

The major challenge in these iterative algorithms lies in the enforcement of the convolution constraint. For example,
we may be required to solve a large constrained least-square system, and need an effective pre-conditioning algorithm
for the matrices because the restoration problem is inherently ill-conditioned.?

We believe, however, that the convolution constraint can be more naturally and efficiently implemented in the
frequency domain. Furthermore, the OTF is bandlimited for an incoherent imaging system,! which is also a frequency
domain constraint. In section 3, we describe a method that takes advantage of the availability of both space and
frequency domains.

3. ALGORITHM
3.1. POCS

The motivation for our blind image deconvolution algorithm comes from projection onto convex sets (POCS), which
is a powerful signal reconstruction technique.'®!' We define constraints, such as positivity and finite support, on
the object and the blur function. As long as all constraints involve convex sets, the fundamental theorem of POCS
guarantees a weak convergence to a fixed point in the intersection of the sets provided that it exists. Ref. 12 provides
a detailed tutorial on POCS, its extensions, and some applications.

As with Ref. 13, we operate on a Hilbert space of function pairs, H = {(s,t) : s € I2,¢ € [}, with the inner
product defined as

(5,0, (w,0)) 2 [ S s(Qu(Q) + S tm)o(n) | - (4)
¢ n
The induced norm is, as usual,
(s, )11 & V/{(s,1), (s, 1)) (5)

*The fundamental theorem of algebra states that any polynomial of degree n can be factorized as p(z) = cII?_; (2 — 2;), where c is a
constant and z;’s are the roots. Therefore, to factorize p(z) into 2 components, there are many possibilities even if we ignore the constant
c.



It is easy to verify that this satisfies the usual requirements of a norm.'* After defining the Hilbert space, next
we need to specify the three basic sets of constraints for the blind deconvolution problem:

1. ¢ £ {(s,t) : s satisfying prescribed prior knowledge about the object g},

2. Cp = {(s,t) : t satisfying prescribed prior knowledge about the point-spread function h}, and
3. Ci 2 {(s,t) : s %t =1}.

The POCS algorithm can be compactly written as'®

(gah)(k+1) = PzPth(gah)k k= 0,1,2,... (6)

where P denotes the projection onto the corresponding set, and the subscript k is the index of iteration. Projection
P from a point z to a set C is done by finding the point y € C such that ||z — y|| is minimum. The existence of
a unique point y is guaranteed for convex sets in a Hilbert space.!> Furthermore, weak convergence still holds if
we relax the projection operator P to T = I + A\(P — I), with A € (0,2). This added flexibility sometimes help in
accelerating the rate of convergence.!?

3.2. Frequency Domain Projection

Cy and Cp, define simple convex sets with projection operators that are both easy to calculate and implement. C;,
however, is not jointly convex in (s,t). For example, if so x to = i, then 2so x 2tg = i, but 3s9 * 3tg # i. This
violates the condition for a convex set, in which the midpoint of any two points in the set should also be in the set.
Nevertheless, we may still be able to find P;, although it is usually much more difficult to evaluate, and could involve
solving a set of nonlinear equations.'®

Yet, if we write the convolution relationship in the spatial frequency domain, the expressions are much simpler
to evaluate. We replace C; by C; £ {(S,T) : S-T = I} where the capital letters refer to signals in the frequency
domain, and “-” represents entrywise multiplication. Our goal is to perform the projection in the frequency domain
directly, which would offer us the following advantages:

1. The projection operator is much simpler. Rather than dealing with a large system of convolution in spatial
domain, in frequency domain each frequency component is decoupled from all others, and we can perform the
projection successively in each frequency. This also allows the algorithmic complexity to scale reasonably with
image size.

2. As in Ref. 13, we can combine C, and C}, into one convex set and therefore, for projection with only two sets,
the summed distance error reduction property holds even though one of the sets is non-convex.'6

3. It is easier to tackle the problem of additive noise with the use of Wiener filtering, as we will demonstrate in
section 3.3.

It is extremely important to realize that Cr lies in another Hilbert space with a norm that is different from (5). In
general, for such cases the theory of POCS may not hold, as reduction in distance in one space does not automatically
imply a decrease in distance in another. Fortunately, for a Fourier pair, Parseval’s theorem in the discrete domain
states that

S 5@ 9 = 5 SIS )P, (7)
N

so the norms in the two Hilbert spaces are proportional. Therefore, reduction in distance in one domain indeed carries
through to the other domain as well. However, this dependence on Parseval’s theorem does limit the extension of
the algorithm, as for example, a weighted norm in the space domain has no equivalence in the frequency domain.



3.3. Regularization

It is well-known that the image deconvolution problem is ill-posed in the continuous domain and ill-conditioned in
the discrete domain. The problem is even worse for blind deconvolution, where we also have uncertainty in the
deconvolution operator. Regularization is therefore essential for visually pleasant output images.

There are many different regularization methods commonly used in image deconvolution, such as Tikhonov-Miller
regularization,'” constrained least-squares (CLS),'® and early termination.!® Except for early termination, most
of the methods are implemented in the space domain. Since the main effect of regularization is the suppression of
high frequency contents, it is seen that Wiener filtering achieves similar results.2® Furthermore, we will show that
Wiener filtering is also consistent with our projection idea.

In traditional Wiener filtering, if the blur function h(z,y) is known, the object is estimated by:!

H*(fo, fy)
3; (fz,fy (fwafy) (8)

|H(fa, f)P + 2075575

G(for fy) =

where ®,, and ®, denote the power spectra of the noise and object respectively. Note that for low frequencies, we
typically have the noise spectrum much smaller than the signal spectrum, and hence ®,/®, is close to zero. In
that case, the Wiener filter is approximately an inverse filter. On the other hand, for high frequencies, the noise
spectrum remains the same since we have white noise, and it will usually far exceed the signal spectrum. Therefore,
®,,/®, would dominate both |H|? and H*, making the Wiener filter approximately zero. The Wiener filter therefore
regulates the amount of high frequency content possible.

At the same time, we can interpret Wiener filtering in terms of a minimum-norm projection. For the moment we
turn the object, image, and noise to vectors by means of lexicographic ordering. The vectors can be considered to
reside in a vector space with inner product (x,y) £ E[xy], where E denotes expectation. Again, it can be verified
that this is a valid inner product, even though it is not a scalar.2! Therefore, we can ask for the projection of the
object vector g onto the space generated by the observed image vector i. Let the projection be § = Ki. By the
orthogonality relationship,

(g - Ki,i) = 0. (9)

After rearranging the terms, we get
K = Elgi|E[ii] ™. (10)

The Fourier transform of the image equivalence of K is seen to be'®

H*(fa, £3)®9(fo, fy) H*(fs, fy)

(1)
H(fo, PRy (for ) + @alFer )~ [H(fo, £,)P + G2l

K(fo, fy) = |

which is exactly the form in equation (8).

Note that ®,, and ®, are unknowns for blind deconvolution. @, can be measured by some noise-estimation
algorithms. As for ®,, since
= [H]®; + 3y, (12)

we could estimate ®, by using ®; and ®,,, which can both be estimated at the beginning of the algorithm, together
with the current estimate of H. Alternatively, one could replace ®,,/®, by the noise-to-signal ratio. Implicitly in this
setting, we are assuming that the signal is also white, hence the spectrum is a constant just like the noise spectrum.
In that case, the Wiener filter is also called the pseudo-inverse filter.29 Although this assumption is not accurate,
the resulting images are often of sufficiently good quality.

Therefore, for our regularized projection of the convolution operation, we have the following simultaneous pro-
jection:
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Figure 1: Alternating Minimization Algorithm

& (f0, fy)
G* U (fo, ) = - ; ety "
y [H®) (fo, fy)|2 + % y

(k)
HO(f,, f,) = e 1(f,.1,), (14)

IG®) (fs, £)12 + ) (fatfy)

where the superscript (k) denotes the variable at the kth iteration. Our blind deconvolution algorithm is summarized
in figure 1.

4. SIMULATION

We take the image “baboon” shown in figure 2 from the standard image processing library for simulation. The size
of the image is 256 x 256. This image is subjected to a space-invariant out-of-focus blur, with the severity parameter
W/A = 0.5.122 Since the system is bandlimited, the blur cannot be space-limited. Instead, we decided that the
majority of the non-zero components are in the center 13 x 13 pixels, so we use that as the support size of the blur.
No other information about the blur is provided to the algorithm, however, except that it is circularly symmetric.
A white Gaussian noise is also added to the blur image, with a signal-to-noise ratio of about 30dB. Initially, we take
an impulse as the estimate for the blur, and the observed blurred image as the first guess for the image. Also, a
constant noise-to-signal ratio is used in place of ®,/®,.

i

Figure 3 shows the noisy blurred image on the left, and the blindly restored image on the right after 20 iterations
of the proposed algorithm. We can see that indeed the restored image has closer resemblance to the original image
than the blurred image, as some of the high frequency components have been restored. Moreover, it demonstrates
that modeling the out-of-focus blur which is not space-limited by a blur of small finite support does not significantly
hamper the effectiveness of the algorithm.



Figure 2: “Baboon” test image

(a) Blurred image (b) Restored image

Figure 3: Restoration of blurred “baboon” image



5. CONCLUSIONS

In this paper we have demonstrated a novel projection-based algorithm for blind deconvolution. We show how the
convolution constraint can be better implemented in the frequency domain, and how regularization can be naturally
incorporated through the use of Wiener filtering. Note that throughout the paper, we have assumed that the only
knowledge of the blur is circular symmetry. If we have more a priori information on the blur, we can add other
constraint sets and they should help us arrive at a better image. As long as the new sets are convex, they can be
combined with C, and Cj, to form smaller convex sets and the algorithm continues to be applicable.
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