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Abstract

We have measured how color appearance of squarewave bars varies with

stimulus strength and spatial frequency. Observer's adjusted the color of

an uniform patch to match the color appearance of the bars in squarewave

patterns. We used low to moderate squarewave patterns, from one to eight

cycles per degree (cpd). The matches are not photoreceptor matches, but

rather are established at more central neural sites. The signals at the pu-

tative central sites obey several simple regularities. The cone contrast of

the uniform patch is proportional to squarewave stimulus strength (color-

homogeneity) and additive with respect to the superposition of equal fre-

quency squarewaves containing di�erent colors (color-superposition). We

use the asymmetric matches to derive, from �rst principles, three pattern-

color separable appearance pathways. The matches are explained by two

spectrally opponent, spatially lowpass mechanisms and one spectrally posi-

tive, spatially bandpass mechanism. The spectral mechanisms we derive are

very similar to luminance and opponent mechanisms derived using entirely

di�erent experimental methods.
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1 Introduction

We report the results of experiments designed to measure how color appearance

depends on spatial pattern. Subjects set full color matches between a two degree

box pattern and individual bars in squarewave patterns. The squarewave spa-

tial frequencies ranged from one to eight cycles per degree. We used squarewave

patterns with a wide range of stimulus strengths and colors.

Two qualitative observations stand out. First, spatial patterns of moderate

and high spatial frequency patterns appear mainly light-dark, with little color

saturation. This observation plays an important role in determining the color

bandwidth compression in broadcast television and compression in digital image

coding [1, 2]. Our data quantify the phenomenon.

Second, the spatially asymmetric color appearance matches are not photopig-

ment matches. For example, moderate frequency squarewave patterns (4 and 8

cpd) cannot stimulate the short-wavelength receptors signi�cantly because of axial

chromatic aberration. Yet, subjects match the bars in these patterns with a stimu-

lus that contains considerable short wavelength receptor contrast. The asymmetric

color-matches are established at neural sites central to the photoreceptors.

The measurements reveal two quantitative properties of the asymmetric matches.

First, the cone contrasts of the squarewave and matching box remain proportional

over a large stimulus strength range. Second, the asymmetric color-matches satisfy

the principle of superposition with respect to color mixtures of the squarewaves.

When the bar of a squarewave of color s1 matches the box m1, and a bar of a

squarewave of color s2 matches a box m2, then the bar of a squarewave of color

s1 + s2 matches the box m1 +m2. Since our data are not photoreceptor matches,

this linearity must reect a linear representation at central neural sites.

Finally, we analyzed the data using a pattern-color separable model. Suppose

that the input pattern is represented as a neural image on three di�erent pathways,

and further suppose that the color appearance of the uniform box and the square-

wave bar match when the corresponding locations in the neural images match.

Our data are consistent with the hypothesis that neural image values are equal to

the product of three terms: the pathway's sensitivity to the spatial pattern, the

pathway's sensitivity to the squarewave's color and the stimulus strength.

We estimated the spatial and spectral tuning of the three pathways both with
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respect to the image at the cornea, and using an estimate of the image at the retina.

The color sensitivity estimates remain unchanged whether we use corneal or the

retinal calculations. In both cases we infer one broadband and two opponent-

colors pathways. The pattern sensitivity estimates at the cornea and retina di�er

greatly, suggesting that much of the loss of spatial contrast sensitivity is due to

axial chromatic aberration.

Our results arrive at a time when the conicting results in qualitative analyses

of color mechanism properties using adaptation have led some authors to suggest

the existence of a wide multiplicity of cortical color mechanisms [3, 4]. To explain

our asymmetric color matching results, however, we do not need to go beyond a

parsimonious three-pathway model.
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2 Methods

2.1 Experimental Task

Two women with normal color vision (Ishihara plates [5]) and corrected spatial

vision (6/6) served as subjects in our experiment. The subjects viewed the screen

from 1:82 meters.

Throughout the experiment the monitor displayed a neutral, �ve degree uniform

background. The test patterns were horizontal squarewave patterns, subtending

two degrees, superimposed upon the uniform background. Subjects compared

the color appearance of one of the bars in the test pattern and an uniform two

degree square matching box. Subjects initiated serial presentation of the stimuli

which always consisted of the test pattern, a half second pause, followed by the

matching box. Stimulus signals were increased and decreased smoothly using a

Gaussian temporal envelope (� = 140 msec, duration = �3:5�). Subjects reviewed

the stimulus patterns and continued to adjust the matching box until they were

satis�ed that they had obtained a complete perceptual match.

During the eight months of the experiment, each subject made more than 720

match settings. They set at least two matches to the two bars in squarewave

patterns of nine di�erent colors, four stimulus strength levels, and four di�erent

spatial patterns. Subjects also set control matches between uniform boxes for all

nine color pairs and strength levels (2� 2� 9� 4� 5). The test patterns included

color signals that appeared white/black, red/green, greenish/purple, yellow/blue,

and orange/light blue when presented in an uniform �eld.

2.2 Stimulus representation

For many of our calculations we represent the squarewave colors in a color space

de�ned by the Smith-Pokorny [6, 7] cone fundamentals, (LMS). We use a version of

the cone fundamentals in which each spectral responsivity is normalized to a peak

value of 1:0. When we express the units in �watts=nm, the uniform background

LMS coordinates are (7:67; 7:20; 6:31). These three values are proportional to the

rate of the photopigment absorptions created by an uniform �eld in the three cone

classes for a standard observer [8].
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We represent the matching box and squarewaves as three dimensional vectors.

Each entry in the vector speci�es the percent modulation of a cone type with re-

spect to the uniform background, s = (�L=L;�M=M;�S=S). This is the color

representation in cone-contrast space. In Table 1 we list the color representa-

tion of the squarewave gratings in cone-contrast space, and we describe the color

appearance of an uniform box with the same color representation.

It is convenient to de�ne two additional terms to represent the stimulus. First,

we de�ne the squarewave stimulus strength to be the vector-length of the square-

wave color representation in cone-contrast space.

ksk = ((�L=L)2 + (�M=M)2 + (�S=S)2)1=2: (1)

Second, we de�ne the color direction of a squarewave to be the corresponding

unit length vector in cone-contrast space, s
ksk

. Specifying the squarewave color

direction and stimulus strength is equivalent to specifying the squarewave cone-

contrast values since

s = ksk
s

ksk
:

2.3 Monitor calibration

We presented our stimuli on a 60 Hz non-interlaced color monitor (Hitachi, model

4319) controlled by a graphics card (TrueVision, model ATVista) in an IBM PC-

AT. We tested for monitor phosphor additivity and corrected for the non-linear

relationship between graphics card input and monitor output (gamma correction).

We measured the spectral power distribution of the monitor's three phosphors

weekly using a spectroradiometer to insure proper color calibration [9]. We mea-

sured the squarewave patterns at several stimulus strengths using a spatial scanner

(Photo Research, model PR-719) to verify the spatial accuracy of the squarewaves

and that gamma correction did not depend on spatial frequency.

2.4 Error Measures for Model Evaluations

We report tests of several models of the asymmetric matching data. The models

share a common form, m = Ts where s is a vector representing the squarewave
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L M S Appearance description

7.668 7.202 6.308 pedestal position, neutral gray

0.490 0.522 -0.596 bright green

-0.490 -0.522 0.596 purple

0.490 0.522 0.000 light green

-0.490 -0.522 0.000 bluish-purple

0.000 0.000 0.745 light bluish-purple

0.000 0.000 -0.745 olive green

0.059 -0.049 0.000 pinkish-red

-0.059 0.049 0.000 aqua green

0.059 -0.049 -0.596 rust orange

-0.059 0.049 0.596 aqua blue

0.490 0.522 0.596 greenish-white

-0.490 -0.522 -0.596 brownish-black

0.549 0.473 -0.596 yellow

-0.549 -0.473 0.596 blue

0.432 0.571 0.000 new leaf green

-0.432 -0.571 0.000 redish-purple

0.600 0.590 0.476 white (JL only)

-0.600 -0.590 -0.476 dark gray (JL only)

0.127 0.152 0.798 purplish-blue (AW only)

-0.127 -0.152 -0.798 dark olive green (AW only)

Table 1: Cone contrast of the color pairs in the squarewave grating expressed as

deviations about the pedestal (left column). Only the highest cone contrast values

are given. Color appearance description of the color when the spatial pattern is

an uniform, square, two degree �eld (right column).
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cone contrast, m is a vector representing the observed match color contrast, and

T is a 3� 3 linear transformation.

For any model transformation, T, there will be some di�erence between the

match settings predicted by the model and the subjects' match settings; we require

an error measure to choose a best �tting transformation. We evaluate the size of

the di�erence between predicted and observed matches relative to our estimate of

the match covariance.

Because we have only two replications of each match, we must make some

guesses about the appropriate covariance matrix. In this paper we report the

results of minimizing with respect to a single covariance matrix,�. This covariance

matrix is derived by combining all of the matches in the control condition where

both patterns are an uniform box. We also have evaluated our models using other

error measures. We have performed minimizations with respect to the CIELUV

metric space, LMS space, and we have used separate covariance matrices derived

from matches made to each spatial pattern. The results we obtain using all of these

di�erent error measures lead to the same qualitative conclusions, though speci�c

parameters do vary. We continue to explore other statistical models of the data

set.

The speci�c error measure we have minimized is shown in Equation 2. Denote

the di�erence between the observed and predicted match as the column vector ei.

We minimize the error measure

nX

i=1

(ei
t��1ei)

1

2 : (2)

This error measure is equivalent to transforming the model deviations into a

color space in which the di�erence between the mean match and the individual

matches in the control condition forms a spherical cloud with unit variance and

measuring the Euclidean distance in the new color space [10, 11]. We call the new

color space the spherical color space. When we report errors in terms of the vector

length in this space, we use the term spherical units.

This error measure yields the same minimum for any color space related by a

linear transformation. To see this, notice that when the observed matches, m are

linearly transformed into a new color space, Lm, the errors are also transformed

to Lei. The new covariance matrix becomes L�Lt. By substituting these terms
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into Equation 2, we see the error is independent of the color space we use to

represent the data. When the same data are represented in a new color space so

that m0 = Lm, s0 = Ls and m0 = T0s0, the minimization procedure �nds model

transformations T and T0, that are related by T0 = LTL�1.

We used the iterative search procedure STEPIT [12] to perform the error min-

imizations. We repeated the minimization search procedure starting at several

di�erent initial parameter locations to insure against �nding local minima in the

error surface.
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Figure 1: Chromaticity coordinates (x,y) of the squarewave bars in an eight cpd

test stimulus (left) and corresponding matching box settings (right). The neutral

gray background was (x; y; Y = 0:27; 0:30; 49:80 cd=m2). Were the subject making

physical matches these two graphs would be identical. Instead, subject's matching

box settings occupy a smaller region of the chromaticity diagram illustrating that

the squarewave bars appear desaturated.

3 Experimental Results

3.1 Asymmetric Pattern Matches are not Photopigment

Matches

Figure 1 illustrates how color saturation decreases as spatial frequency increases

and that the asymmetric matches are not photopigment matches. The left panel

in Figure 1 shows the chromaticity coordinates of the bars in an eight cpd square-

wave. The chromaticity coordinates of the matches to these bars are shown on the

right. Had the asymmetric color matches been physical matches, the two graphs

would be identical. Instead, the matches set to the moderate frequency square-

waves occupy a much smaller portion of the chromaticity diagram, illustrating the

reduced saturation in the color appearance of the eight cpd pattern.
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3.2 Precision in the Task

We evaluate our models of these appearance matches by comparing a model's

residual error to the precision obtained in our spatially asymmetric color matching

task. We de�ne precision as the di�erence between the average match in a par-

ticular condition and the individual matches. We quantify the magnitude of this

di�erence by calculating the length of the di�erence vector in spherical color space.

Each panel in �gure 2 shows the cone contrast of the mean match on the

vertical axis and the cone contrast of the individual matches on the horizontal axis

for one cone type. The center point in each graph represents the gray background.

All cone contrast values are those measured at the monitor. The deviation about

the solid diagonal line is a visual representation of the precision in the task. The

distance of the average deviation for this subject is 2:0 spherical units.

3.3 Tests of Color Linearity

The asymmetric color-matches for a squarewave establish a transformation, T,

between the color representation of the squarewave bars, s and the color repre-

sentation of the matching box m. We have analyzed two main properties of the

transformation, T.

First, we evaluate color-homogeneity. Consider an experiment in which we

�x the squarewave frequency, f , and color direction, c, and we measure matches

to a series of stimulus strengths. We test whether scaling the squarewave strength

also scales the matching box strength. If s matches m, then does �s match �m?

Second, we evaluate color-superposition. Suppose s and s0 are squarewaves

at the same spatial frequency. When s matches m, and s0 matches m0, will the

squarewave whose color superposition of s and s0 match m+m0 ? If both of these

properties are satis�ed, then the transformation T is linear, and we may represent

it using a 3� 3 matrix.

Color-homogeneity Figure 3 illustrates one test of color-homogeneity. Each

panel in the Figure shows the homogeneity test for a single dimension of the color

representation in cone contrast space. The horizontal axis of each panel is the

cone contrast of the squarewave bar and the vertical axis is the cone contrast of
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M Cone
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Figure 2: Visual representation of the precision in the task for one subject (AW).

Cone contrast of mean match on the vertical axis plotted against the cone contrast

of the individual matches on the horizontal axis. The center point represents the

background value. Each panel represents a di�erent cone type. The distance of

the average deviation is 2:0 spherical units. For our second subject (JL) this value

is 1:53.
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the matching box. Again, both axes refer to quantities measured at the monitor,

not the retina. The panel origin represents the mean background.

The squarewave used for the data in Figure 3 was 1 cpd and its bars appear

orange and light blue. Each data point represents the average of at least two

matching box settings. The matches were made at four stimulus strength levels

for each of the two bars, yielding a total of 16 matches.

Color-homogeneity implies that for each test frequency and color direction con-

dition there is a 3 � 3 matrix, Tf;c, that maps the test stimuli into the matching

box settings [13]. This matrix de�nes a line in three-dimensional space. The lines

in the panels represent the best �tting line through the origin and the data. Color-

homogeneity holds to the extent that the data fall precisely upon a line. If the

subject makes a physical match the data will fall upon a line with unit slope in

each panel. Even at one cpd, the matches do not fall on lines of unit slope.

Each observer collected data for forty-�ve graphs like the one in Figure 3.

Figure 4 contains a sub-set of these graphs for one squarewave color direction at

several spatial frequencies.

In the control condition, when the test pattern is an uniform box (left column),

the subject's matching box settings are close to physical matches. As the spatial

frequency increases, the slopes tend to decrease and the matches deviate from

physical matches.

The data in Figure 3 and 4 are typical of the precision of color-homogeneity we

have observed. To illustrate the overall quality of the color-homogeneity prediction,

we have combined the data from all forty-�ve conditions in a single graph. To

combine the data we �t straight lines through each of the graphs individually; we

then merge the data into a single graph that shows the observed and predicted

values. This coarse test of homogeneity is shown for one subject in the left hand

panel of Figure 6. The average deviation from color-homogeneity is 2:79 spherical

units.

Color-homogeneity serves as a good �rst-order model of the data. We comment

on some of the failures of color-homogeneity in more detail at the end of this section.

Color-superposition We test color superposition by comparing matches to

the sum of squarewaves to the sum of the matches to squarewaves. We illustrate
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Figure 3: The three panels de�ne the subject's full-color matches to a one cpd

squarewave; the squarewave bars appeared orange and light blue. The horizontal

axis plots the physical measure of the squarewave bar and horizontal axis plots the

subject's matching box setting. The axes are cone contrast, the center represents

the background value and each panel describes the settings for one cone type. The

solid line is the prediction from the best �tting color-homogeneous model.
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test frequencies. The squarewave bars were a di�erent color from Figure 3 and

appeared bright green and purple at low spatial frequencies.
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Figure 5: This �gure illustrates color-superposition for one cone type. Suppose a

subject's matches to two di�erent squarewave stimuli fall upon the dotted lines.

The additivity prediction is that matches to the sum of the squarewaves will fall

upon the solid line.

the test for one spatial pattern and cone type schematically in Figure 5. Suppose a

subject's matches to two di�erent squarewave stimuli fall upon the the two dotted

lines. The additivity prediction is that matches to the sum of the squarewaves will

fall upon the solid line.

Our data set includes measurements in nine color directions for each spatial

pattern. The color directions are inter-related sums. Color-superposition implies

that there is a single 3� 3 matrix that maps all test stimuli presented in a given

spatial frequency condition into the corresponding matching box setting. We refer

to this matrix as Tf , dropping the matrix's dependence on color direction. For

each subject and each spatial pattern we solve for the matrix Tf that minimizes

the error described in the methods section (Equation 2).

We plot the observed and predicted cone-contrast using the color-superposition

model for all of the asymmetric matches in the middle panel of Figure 6. Color-

superposition and color-homogeneity are nested hypotheses: in the presence of

weak continuity assumptions, superposition implies homogeneity. By comparing
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the left and middle graphs of Figure 6, you can see that the added requirement of

color-superposition does not worsen the �t substantially.

3.4 The Pattern-Color Separable Model

How does the linear transformation, Tf , depend on the spatial pattern? We ana-

lyze this dependence by casting the asymmetric matching experiment as a neural

model. Suppose that three parallel neural pathways code color appearance. The

pathways di�er in their color and pattern sensitivities. We assume that each path-

way forms a neural image of the visual pattern. Two locations in the visual �eld

have the same color appearance when the three pathway values are equal.

We examine the hypothesis that the pathway representations are pattern-

color separable. We assume that the value in one neural image is the product of

three terms. One term de�nes the pathway's sensitivity to the squarewave's color

direction. A second term de�nes the pathway's sensitivity to the spatial pattern.

The third term is the squarewave's stimulus strength.

We can express this hypothesis in matrix notation as follows. We represent the

terms de�ning the color direction sensitivity by the 3� 3 matrix, C. This matrix

maps the color direction vector, s
ksk

, into the color space de�ned by the three

visual pathways. We represent the sensitivities to the spatial pattern by the 3� 3

diagonal matrix Df . Each entry in this matrix scales one pathway's response. We

represent the three pathway responses succinctly as

DfCs = kskDfC
s
ksk

:

The matrixC is the same for all di�erent spatial patterns. The diagonal matrixDf

depends only on the spatial pattern. Because the individual pathways are separable

with respect to pattern and color, we call the model pattern-color separable.

Finally, we note that it is possible to follow the pathway responses with an

arbitrary non-linearity without changing any predictions of the model.
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3.5 Applying the Model to the Experiment

Experimentally, we observe matches between a squarewave bar, s, and a box, m.

By assumption, two stimuli match when

D0Cm = DfCs

m = C�1D0

�1DfCs : (3)

To simplify the notation, and without loss of generality, we assume that D0 is

the identity matrix and are left with

m = C�1DfCs : (4)

The pattern-color separable model is very restricted compared to the color-

homogeneous and color-superposition models. Color-homogeneity permits an ar-

bitrary matrix for each color direction and each spatial pattern, Tf;c. Color-

superposition permits an arbitrary matrix for each pattern, Tf . Pattern-color

separability implies that all of the matrices Tf must share a common form, Tf =

C�1DfC, and contain the same color matrix C.

We performed an iterative search to �nd the collection of similar matrices, Tf =

C�1DfC, that minimize the error measure in Equation 2. The graph on the right

hand side of Figure 6 plots the observed and predicted matches of the pattern-color

separable model. The pattern-color separability hypothesis does not substantially

worsen this visualization of the error. The average length of the residual errors for

observers AW and JL are 3:39 and 3:15 spherical units respectively. The precision

of their matches is 2:00 and 1:53 spherical units respectively.

A second way to quantify the magnitude of the error in the separable model is

to calculate the length of the residual vector in CIELUV color space. This space

attempts to make equally discriminable colors equal length. To calculate this

distance measure, �Euv, one needs to make an estimate of the observer's white

point. We assumed that the uniform background �eld represented a 20 percent

gray surface. The average length of the residual errors in �Euv units for observers

AW and JL are 3:17 and 2:79 respectively. The precision of the matches for AW

and JL are 1:87 and 1:47 �Euv units.
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Figure 6: Each column plots the observed versus predicted matches for color-

homogeneity (left), color-superposition (middle), and pattern-color separable (right

column) models. Each row shows the predictions for a di�erent receptor class.

The axes are cone contrast units measured at the monitor and the center position

represents the background value. The average residual errors for this subject (AW)

and the three models are 2:79, 3:33 and 3:39 spherical distance units. For subject

(JL) the values are 2:48, 3:07 and 3:12. The number of parameters required to �t

the color-homogeneity, color-superposition and pattern-color separable models to

one subject's data is 135, 45 and 21 respectively.
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3.6 Evaluation of the Model

For many industrial imaging applications, three to four �Euv units is considered

small, about one just-noticeable-di�erence. For some demanding commercial ap-

plications, involving matches between large areas of paint or fabric placed directly

adjacent to one another, �Euv values of one or less are required. The di�erence

between the precision of the observers' replications of their matches and the model

predictions is about one �Euv and also about one spherical unit. While pattern-

color separability may not be precisely correct, the deviations are small enough

that we think it is useful to consider the properties of the mechanisms derived

from the observers' matches.

3.7 Pattern and Color Sensitivity Function Estimates

The pattern-color separable calculation estimates the color and pattern sensitivi-

ties of all three putative pathways. Each row in the matrix C de�nes the spectral

responsivity of a pathway which is a weighted sum of the cone photopigment ab-

sorptions. The diagonal entries ofDf de�ne the pattern sensitivity of the pathways.

In the appendix we prove that the matrices Df and C we recover from our search

are unique up to a scale factor applied to each row of C.

For one observer (AW) we plot the spectral responsivity of the three pathways

in left panel of Figure 7. We plot the pattern sensitivities to the squarewaves in the

right panel of Figure 7. Spectral and spatial functions from one pathway are drawn

using the same linetype. These pattern sensitivity plots are not modulation transfer

curves for two reasons. First, our measurements are based on squarewaves, not

sinusoids. Second, and more important, we have not tested pattern-superposition.

Modulation transfer functions are meaningful only for linear systems.

The formal simpli�cations from pattern-color separability have a geometric

counterpart. First, represent both the matching box settings and the physical

signal of the squarewave bars in the color coordinate frame de�ned by matrix C.

Second, scale the axes in this new color space to make the physical signal of the

squarewave bars coincident with the matching box settings. The appropriate scale

factor for a given axis and spatial pattern, f , is given in the appropriate entry of

the diagonal matrix Df .
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Figure 7: Pattern-color separable color and pattern functions for subject AW.

Spectral and spatial functions from one pathway are drawn using the same linetype.

Figure 8 shows subject AW's appearance matches plotted in the pattern-color

separable color coordinate frame. The solid lines in each panel are the predictions

from the pattern-color separable �ts to her data. The data in each column include

the matches from the nine color directions at each spatial frequency. Were the

model perfect all the data would lie upon the solid line drawn in each panel.

The slope of the lines at each spatial frequency de�ne a color pathway's pattern

sensitivity.

The data from our two subjects are similar. Figure 9 contains the pattern-

color separable mechanisms derived by combining the data from both observers.

We tabulate the matrix C (Tab. 2) and matrices Df (Tab. 3) for the individual

subjects and for the joint �t.

To estimate the precision of our derived functions, we used a bootstrap pro-

cedure [14]. We draw a random sample, with replacement, of 720 color-matches

from the collection of 720 color-matches. For each draw we �nd the best-�tting

pattern-color separable model and its corresponding spectral and spatial tuning

functions. We repeated this process 25 times to obtain twenty-�ve estimates of

each tuning curve. Figure 9 plots the envelope of the estimates from each draw

around the estimate from the true data.
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Figure 8: AW's matches are plotted in the color representation derived from the

pattern-color separable model. Each column contains the data from one spatial

pattern and each row shows the predictions for one of the three color dimensions.

The solid lines are the pattern-color separable model predictions. Each panel

includes matches from all squarewave color-pairs.
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Subject function L M S Graph line type

JL W-B 0.962 0.004 -0.272 solid

R-G -0.658 0.751 -0.049 dashed

B-Y 0.095 -0.589 0.802 dotted

AW W-B 0.999 0.009 0.000 solid

R-G -0.694 0.719 0.039 dashed

B-Y 0.397 -0.751 0.528 dotted

JL & AW W-B 0.990 -0.106 -0.094 solid

R-G -0.669 0.742 -0.027 dashed

B-Y -0.212 -0.354 0.911 dotted

Table 2: This Table contains the color matrices,C, for the best �tting pattern-color

separable model. Each row lists the normalized cone weights used to construct

the spectral functions shown in Figures 7 and 9. The rows are required to be

unit length. To create, say, the red-green spectral function for subject AW, plot

(�0:694L + 0:719M + 0:039S) as a function of wavelength where L,M,S are the

Smith-Pokorny cone fundamentals each normalized to a peak value of 1:0.
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Figure 9: Pattern-color separable pattern and color functions estimated by com-

bining subjects data. The envelopes around each curve describe the extreme values

observed after repeated bootstrap estimates. See text for details.
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Subject frequency W-B (solid) R-G (dashed) B-Y (dotted)

JL uniform 0.873 0.841 0.826

1cpd 0.850 0.539 0.511

2cpd 0.797 0.542 0.413

4cpd 0.706 0.466 0.359

8cpd 0.513 0.345 0.079

AW uniform 0.975 0.921 0.933

1cpd 1.192 0.675 0.645

2cpd 1.180 0.527 0.527

4cpd 1.142 0.457 0.387

8cpd 0.859 0.176 0.095

JL & AW uniform 0.916 0.873 0.872

1cpd 1.025 0.590 0.604

2cpd 0.987 0.559 0.485

4cpd 0.926 0.464 0.388

8cpd 0.703 0.263 0.096

Table 3: This Table contains the values in matrices Df for best �tting pattern-

color separable model. Each column lists the scale factors for a speci�ed spectral

function and are used to construct the spatial scale functions shown in �gures 7

and 9.
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3.8 Model Limitations

Separability is an important property; it guides practical measurement and hy-

pothesis formation about the neural representation of visual appearance. We wish

to qualify our support since two assumptions that underlie separability are con-

tradicted in portions of our measurements. We believe these deviations represent

modest but genuine failures of color-homogeneity, linearity or separability.

First, we have observed instances in which the data are not symmetric through

the origin. For example, the data from subject AW in the four cpd condition

(Figure 8, fourth column, top panel) are not odd symmetric through the origin.

Data in this plot fall primarily above and below the prediction line respectively.

The data appear linear in each quadrant, but the two line segments are themselves

not aligned.

Second, we also have observed instances in which the data are not strictly

linear. For example, data in the red-green plot in the 1 cpd condition are more

nearly sigmoidal than linear (Figure 8 second column). The model overestimates

the scale factor for small signals in this case. Small decrements fall below the line

and small increments fall above the line predicted by the model.
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4 Discussion

4.1 Color Representations

We compare our derived pattern-color separable representation with four pattern-

color separable representations that extend color representations proposed in other

contexts.

Color representation DKL extends the MacLeod and Boynton [15] chromaticity

diagram. The representation was �rst described in a paper evaluating physiologi-

cal responses in the lateral geniculate nucleus of macaque monkeys [16] (see also

Flitcroft [17]). The MJHJ representation was proposed by M�uller [18, 19], quanti-

�ed by Judd [20] and studied by Hurvich and Jameson [21, 22, 23] in unique hue

cancellation experiments. The YIQ representation was de�ned by the National

Television Standards Committee based on a variety of psychophysical measure-

ments involving spatial judgments of color appearance [24]. Guth [25, 26] and his

colleagues have developed the ATD representation as a coarse summary of a broad

variety of di�erent color judgments.

Each color representation de�nes a color matrix,C. We extend them to pattern-

color representations by searching for diagonal matrices, Df , that minimize Equa-

tion 2 with respect to our data set.

The spectral sensitivities of each color representation are plotted at the top of

Figure 10. The estimated pattern sensitivity functions are plotted in the bottom

row of the Figure. Our current error measure does not distinguish strongly between

the DKL, MJHJ and YIQ representations. The di�erence between these model �ts

is comparable to the di�erence we observe when we apply the best �t from one

observer to the data of the other. The ATD representation is somewhat worse. All

of these color representations, combined with their appropriate spatial functions,

�t the pooled data with �Euv residual errors ranging from 3:61 to 3:89.

4.2 Optical Factors

Our analysis has combined the optical and neural components of vision. Can we

separate the contributions of these two factors?
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Figure 10: The color (top) and pattern (bottom) tuning functions for four other

color representations. The color sensitivities were taken from the literature, and the

pattern sensitivities were determined from a best-�t of the pattern-color separable

model. The functions of corresponding line type (solid, dashed and dotted) belong

to common putative pathways.
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Axial chromatic aberration is the most important optical factor limiting the

eye's spatial resolution. To estimate the contribution of axial chromatic aberration

to the matches, we need an estimate of the optical transfer function at di�erent

wavelengths. We are unaware of any empirical estimates of this function, so we

used an estimate based on a model described by Wandell and Marimont [27] based

on methods introduced by Hopkins [28].

The model assumes that the optics introduce only spherical aberration and that

the eye is statically accommodated to 580 nm. In addition, we simplify calculations

by treating our squarewave stimuli as sinewaves. We use the chromatic aberration

data from Wald and Gri�n [29] and Bedford and Wsyzecki [30] to estimate the

defocus at each incident wavelength. From photographs we measured our subjects'

pupil size diameter under our experimental conditions (5:5 mm). We selected other

model eye parameters to match the average human eye [27].

To discount the e�ects of axial chromatic aberration, we must estimate the

retinal image. We begin with the spectral power distribution of the input signal,

which we treat as the sum of monochromatic sinusoids at the same frequency

as the squarewave stimulus. The optical transfer function de�nes the amplitude

reduction of each monochromatic sinusoid, yielding the estimated retinal image.

We assume the retinal image is absorbed by the photoreceptors and inert pigments

in the usual way, and thus we obtain an estimate of the cone contrasts corrected

for axial chromatic aberration.

Figure 11 shows the spectral and spatial tuning functions arising when we �t the

pattern-color separable model using our estimate of the cone contrast stimulating

the retina. These spectral functions are very similar to those shown in Figure 9;

we again �nd one spectrally broadband function and two spectrally opponent.

After correcting for axial chromatic aberration, the pattern sensitivity func-

tions show only a two-tenths (blue-yellow mechanism) or three-tenths (red-green

mechanism) log unit roll-o� at our highest frequency. We conclude that the pattern

sensitivity loss we observe for the whole observer is due mainly to optical factors.

Since axial chromatic aberration is due largely to the presence of water in the eye,

this factor is likely to be important across species and observers [17].
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Figure 11: Pattern-color separable tuning curves using receptor data that are

corrected for axial chromatic aberration. The color functions are similar to the

curves derived without correction for chromatic aberration (see Figure 9). The

pattern sensitivities fall o� more slowly with frequency, suggesting that the loss of

resolution is largely due to optical factors.
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4.3 Related Literature

Appearance Measures Georgeson and Sullivan [31] asked subjects to match

the contrast of sinusoidal patterns at di�erent spatial frequencies and stimulus

strengths. The color direction, determined by their oscilliscope phosphor, was the

same for both the �ve cpd standard frequency and the various test frequencies. We

test for homogeneity of their data by plotting the contrast of the standard frequency

versus the matching contrast of the test frequency in linear coordinates and �nding

the best �tting straight line through the origin and data points. We restrict our

analysis to stimulus conditions in which the standard grating contrast is 5% or

greater. The test grating spatial frequency is 0:25; 0:5; 1:0; 2:0; 5:0; 10:0; 15:0; 20:0

or 25:0 cpd.

In Figure 12 we show the observed versus predicted contrast settings from the

best �tting homogeneous models to the Georgeson and Sullivan data. As in Figure

6, were the model to �t perfectly, all of the points would fall upon the solid diagonal

line of slope one. We see that the homogeneous model serves well to predict these

contrast match settings. Evidently, the non-linearities observed by Georgeson and

Sullivan are restricted to threshold and near threshold measurements.

A number of investigators have studied color appearance using an hue cancel-

lation paradigm [32, 33, 34, 35, 36, 37, 38]. Several of these studies have evaluated

the linearity of the mechanisms using a variety of techniques. Our experimental

paradigm di�ers greatly from hue cancellation in that we require our subjects to

make complete appearance matches so that our results are not directly compa-

rable. Instead, we stress the qualitative similarity between our derived spectral

functions and those determined by the hue cancellation paradigm, which by its

nature, presupposes opponency.

Threshold Measures Much of what we have learned about pattern and

color sensitivity comes from threshold experiments [39, 40, 41, 42, 43, 44, 45,

46]. Generally, threshold measurements of the pattern sensitivity of putative color

pathways begin with two assumptions. First, experimenters often assume that the

color sensitivity of the mechanisms are known prior to the experiment or that these

properties can be measured using procedures such as icker photometry. Second,

the experimenter assumes that the pattern and color sensitivities are separable.

This assumption is implicit in the act of measurement since if separability fails,
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Figure 12: Observed contrast matches versus contrast matches predicted from

homogeneous models �t to data given in Georgeson and Sullivan [31]. We restrict

our analysis to stimulus conditions in which the standard grating contrast is 5% or

greater. The test grating spatial frequency is 0:25; 0:5; 1:0; 2:0; 5:0; 10:0; 15:0; 20:0

or 25:0 cpd. Data points are reected through the orgin. Were the homogeneous

model perfect all of the points would fall upon the solid diagonal line of slope 1:0.
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then the pattern and color sensitivity curves are intertwined and we learn very

little from an individual tuning curve.

Our experiments begin with the premise that it is important to test both of

these assumptions. The color appearance experiments we report here are formu-

lated to test separability and estimate pattern and color tuning. We report on

similar tests using threshold data elsewhere [47].
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5 Conclusion

When observers match the color appearance of low and moderate spatial square-

waves with uniform patches, the matching transformation satis�es color-homogeneity

and color-superposition. By examining the data, it is clear that these asymmetric

color matches are not photoreceptor matches. Rather, the matches depend on an

equivalence established at more central sites.

To understand the properties of the signals at these central sites, we have

analyzed the matching transformation using a pattern-color separable model. We

used the data to derive, from �rst principles, the separable pattern and color

sensitivities of three central site mechanisms.
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A Uniqueness

The pattern-color separable model recovers a collection of matrices that determine

the spectral and spatial tuning curves of the putative mechanisms. We called

these matrices Df and C. For each spatial pattern, f , the mechanism matrices are

related to the empirically determined matrix that maps the color of the test input

to the observed match by the formula Tf = C�1DfC. What are the uniqueness

properties in our estimate of C and Df?

Consider an alternative solution based on a new color matrix C0 = LC and a

new diagonal pattern matrix Df
0. The new pair of matrices must yield the same

Tf . We evaluate uniqueness of our results by constraining the matrix L.

First, notice that when L is a diagonal matrix

Tf = C�1DfC = C0�1Df
0C0

C�1DfC = (LC)�1Df
0LC

C�1DfC = C�1L�1Df
0LC

Df = L�1Df
0L

Df = Df
0

It follows that any diagonal transformation of C is permissible and leads to the

same diagonal matrix, Df .

Now, consider a proof of the converse, i.e. that only diagonal transformations

are permissible. Begin by noting that

Tf = C�1DfC = C�1L�1Df
0LC

Df = L�1Df
0L

LDf = Df
0L (5)

From inspection of Equation 5, we see that the columns of L are eigenvectors

of the diagonal transformation Df
0. The eigenvectors of a diagonal matrix are the

unit vectors (1; 0; 0); (0; 1; 0), and (0; 0; 1), thus it follows that L must be a diagonal

matrix [48].
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We state our uniqueness results to show that when we recover a pair of matrices

C and Df , LC and Df are also solutions only when L is a diagonal matrix.

Hence, our estimates of Df are unique; our estimates of C are unique up to three

independent scale factors. These scale factors set the overall sensitivity of each

appearance mechanism. Intuitively this makes sense; altering the scale of any of

the three color tuning functions will preserve the match. We have shown that these

scale factors are the only freedom left in the pattern-color separable solution.
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