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Abstract

We have studied how contrast threshold sensitivity depends jointly on

pattern and color. We measured sensitivity to colored Gabor patches from

0.5 to 8 cycles per degree (cpd). At each spatial frequency, we measured in

many di�erent color directions.

We analyze the sensitivity measurements using a series of nested models.

We conclude that a model consisting of three pattern-color separable mech-

anisms predicts detection performance nearly as well as �tting psychometric

functions independently. We derive the pattern and color sensitivities of the

separable mechanisms from the experimental data. Two derived mechanisms

are spatially lowpass and spectrally color-opponent. The third mechanism

is spatially bandpass and spectrally broadband.
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1 Introduction

What is the relationship between the visual representation of color and other per-

ceptual attributes? To the extent that pattern, color, time, and motion are psycho-

logical representations of separate physical properties, independence of the neural

representation of these physical properties is desirable. But, there is considerable

evidence showing that the neural representations of these properties interact (see

e.g., Wandell, 1995 chapters 9 and 10). In an earlier paper we reported and ana-

lyzed the interactions of pattern and color using a color appearance task (Poirson

and Wandell, 1993). Here, we generalize that analysis using sensitivity measure-

ments.

Our experimental measurements and theoretical treatment are organized around

the question of whether the visual mechanisms that limit contrast sensitivity are

pattern-color separable. A mechanism is pattern-color separable when (a) its

relative pattern sensitivity is invariant as we change the test stimulus' spectral com-

position, and (b) its relative wavelength selectivity is invariant when we change

the test stimulus' spatial pattern. The absolute level of the pattern and color sen-

sitivity can vary, but the relative pattern and color sensitivities must not. From

this de�nition, it is evident that pattern-color separability is required before we

can say that a mechanism has a unique pattern or wavelength sensitivity function.

Pattern-color separability stands in contrast to a variable tuning hypothesis which

states that a mechanism's color responsivity changes with changes in stimulus

parameters (Hood and Finkelstein, 1983; Finkelstein and Hood, 1984).

Separability itself is an important characteristic of a system. If it holds, then

we are able to predict completely some aspect of behavioral performance or a

neural mechanism with relatively few measurements. Separability is especially

important if we wish to relate behavioral and physiological measurements. If we

would like to compare, for example, a behavioral contrast sensitivity function with

a neural contrast sensitivity function we must have some con�dence that each of

these contrast sensitivity functions is associated �rmly with the behavior or the

neural mechanism.

An important organizational principle in physiological work is the notion of

functional specialization which asserts that speci�c regions in the brain process

one aspect of the visual stimulus regardless of other visual attributes. This state-

ment is probably not true in detail, but serves to guide experiments. We know
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that there are many important sites in the visual pathways where pattern and

color are not represented separably. For example, the responses of primate lateral

geniculate neurons are not pattern-color separable. The spatial receptive �eld of

a red-center green-surround neuron will be very di�erent if one measures using

a long-wavelength light versus a middle-wavelength light (see Wiesel and Hubel,

1966; Gouras, 1968; Derrington, Krauskopf & Lennie, 1984). To the extent that we

can explain behavioral sensitivity measurements as being mediated by separable

mechanisms, then we can exclude these neural elements as being the limiting stage

of contrast sensitivity.

In many behavioral studies of spatiochromatic sensitivity, pattern-color sepa-

rability has been assumed implicitly. A typical approach to measuring the spatial

sensitivity of chromatic mechanisms is (a) to select the wavelength composition of

a target in order to isolate the response of a putative visual mechanism, and then

(b) to measure the contrast sensitivity function using this stimulus. The measured

contrast sensitivity function is reported as the putative visual mechanisms' spatial

sensitivity (e.g., van der Horst and Bowman, 1969; Granger and Heurtley, 1973;

Mullen, 1985). This characterization is complete only if there is some reason to

believe that the visual mechanism is pattern-color separable, because only in that

case does a unique contrast sensitivity function exist.

In our earlier work (Poirson and Wandell, 1993; Wandell, 1995) we showed that

color appearance depends on spatial pattern. Hence, taken as a whole no pattern-

color separable model can predict color appearance. Even though behavior as a

whole is not pattern-color separable, it is possible that the separate visual mecha-

nisms that comprise the system are. The simplicity of the component mechanisms

can be hidden if we measure after the separable pathways are combined. Again,

neurons in the lateral geniculate can serve as an example. The receptive �elds of

these cells are conventionally modeled as the sum of a center and surround. Both

the center and the surround are assumed to be pattern-color separable (Marr,

1982; Ingling & Martinez, 1985). Yet, the response of the entire cell, formed from

the sum of the center and surround components, is not pattern-color separable.

In the same way, the individual visual mechanisms that combine to determine the

observer's representation of color and pattern may each be pattern-color separable,

even though the observer's behavior is not.

Pattern-color separability is a key property because only when it holds can we

be con�dent that the pattern and color sensitivities we measure are general de-
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scriptions of the system. Changing an unrelated stimulus parameter, such as the

wavelength composition of the test light, should not produce a di�erent contrast

sensitivity function. Our approach to analyzing the representation of pattern and

color is somewhat like that of Noorlander and Koenderink (1983). These authors

report sensitivity measurements for stimuli at a variety of spatial and temporal

frequencies, a few adaptational states, and with a variety of color directions. They

considered several line-element models to predict the set of sensitivity measure-

ments. We too measure sensitivity to a variety of colored spatial patterns. Our

measurements were made on a neutral background using a slow timecourse meant

to be similar to steady viewing of the stimulus. Our analysis di�ers from theirs in

that we have focussed our measurements on determining whether performance can

be explained by combining the sensitivity of a few pattern-color separable mecha-

nisms and estimating the pattern and wavelength sensitivities of these mechanisms.

We have found that it is possible to predict accurately sensitivity to our spati-

ochromatic measurements using a set of three pattern-color separable visual mech-

anisms. The pattern and color sensitivities of the visual mechanisms that we derive

from our data have an opponent-colors organization that is generally similar to the

opponent-sensitivities reported in hue cancellation experiments and similar to the

estimated color mechanisms derived from our color appearance studies. Conse-

quently, we believe that our focus on the issue of separability is well-placed and

that analysis of separability may prove fruitful in formulating questions about the

visual representations of other perceptual variables as well.
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2 Methods

2.1 Stimuli

Space. Our spatial stimuli were vertical cosinusoids multiplied by a Gaussian

window. The spatial pro�le of our stimuli is de�ned by the equation

S(x; y) = exp[�(x2 + y2=�2

S)]cos(2�fx): (1)

The parameter f de�nes the spatial frequency and �S de�nes the Gaussian spatial

window size. We collected two complete data sets using slightly di�erent spatial

stimuli. In the constant cycle condition the size of the Gaussian spatial win-

dow decreased with increasing frequency so that the number of spatial cycles was

constant for all test patterns. In this condition the frequencies were 0:5, 1, 2 and

4 cpd and the width of the Gaussian window at half height subtended 7:5, 3:8,

1:9, and 0:9 degrees respectively. In the constant size condition we �xed the half

height width of the Gaussian window to 1:5 degrees, and measured sensitivity to

cosinusoids at 0:5, 1, 2, 4, and 8 cpd.

Color. We presented our stimuli on a calibrated color monitor. We represent

the test patterns in a color space de�ned by the Smith-Pokorny cone fundamen-

tals, (L;M; S) (Smith & Pokorny, 1975; Boynton, 1979). We use a version of

the cone fundamentals in which each spectral responsivity is normalized to a

peak value of 1:0. The (L;M; S) value of the uniform background in units of

(microwatts=cm2-nm-sr) was B = (82:87; 65:45; 25:80) in the constant cycle con-

dition and B = (7:67; 7:20; 6:31) in the constant size condition. These values are

proportional to the quantal absorption rate of the three cone photoreceptors due

to the uniform background for a standard observer. The backgrounds in both

experimental conditions appeared a neutral white color. Using CIE 1931 XYZ

fundamentals the background was (xyY = 0:38; 0:39; 536:2 cd=m2) in the con-

stant cycle condition and (xyY = 0:27; 0:30; 49:8 cd=m2) in the constant size

condition.

We represent the color coordinate of the test stimulus as a three dimensional

vector, s. Each entry in the vector speci�es the percent modulation of a cone

type with respect to the uniform background, s = (�L=L;�M=M;�S=S). This

is the color representation in cone-contrast space. It is convenient to de�ne two
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additional terms to represent the stimulus. First, we de�ne the test pattern stim-

ulus strength to be the vector-length of the test pattern color representation in

cone-contrast space

ksk = ((�L=L)2 + (�M=M)2 + (�S=S)2)1=2 : (2)

Second, we de�ne the color direction of a test pattern to be the corresponding

unit length vector in cone-contrast space, s = s
ksk . Specifying the test pattern

color direction and stimulus strength is equivalent to specifying the test pattern

cone-contrast values.

Time. The stimulus signal was increased and decreased smoothly using a Gaus-

sian temporal envelope

T (t) = exp[�(t2=�2

T )] : (3)

The width of the Gaussian at half height equaled 165 msec (duration = �2:5�T ).
The complete spectral, temporal and spatial description of our stimuli is then

sT (t)S(x; y) +B (4)

One subject, HT, collected data in both the constant cycle and the constant size

conditions. Our second subject, LW, participated in the constant size condition.

We continuously monitored data collection and chose new color directions to reduce

the uncertainty in the estimated model parameters, as described later.

2.2 Experimental Apparatus

The constant cycle condition. We displayed stimuli on a Barco color monitor

(model CDCT 6351) running at 87 Hz noninterlaced controlled by a Number Nine

Graphics System video board (model Revolution) in an IBM PC-AT. We added an

uniform �eld to the screen using a pair of symmetrically placed slide projectors to

increase the contrast resolution of the signal. We adjusted neutral density �lters

placed in the slide projectors' light path to keep their intensity level constant as

the bulbs aged. The pro�les of our spectral power distribution measurements for

bulbs from any single manufacturer were the same throughout the experiment.

The subject viewed stimuli through a restricting tube with a 10 degree square

aperture that eliminated scattered light from the projectors and insured the 75 cm

viewing distance.
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The constant size condition. We presented stimuli on an Hitachi color mon-

itor (model 4319) running at 60 Hz noninterlaced and controlled by a TrueVision

video board (model ATVista) in an IBM PC-AT. To produce �ner control of the

video signals we passed the video board voltage output through special electronic

circuitry (Poirson, 1991). Subjects viewed the screen from 1:82 meters. The

background subtended 7 degrees.

2.3 Calibration

We measured the relative spectral power distributions of each of the three phos-

phors and also characterized the non-linear relationship between video board in-

put and monitor output at regular bi-weekly intervals (Brainard, 1989). We also

measured the monitors' modulation contrast function through the entire spatial

frequency range of our experiments using a fast spatial scanner (Photo Research,

model PR-719).

2.4 Psychometric function estimation

The psychometric function is the relationship between stimulus strength, ksk, and
the probability of correct detection. We approximate the psychometric function

using the Weibull,

p = 1� 0:5exp[�(ksk=�)�] : (5)

We estimate the psychometric function o�set parameter, �, and slope parameter, �,

in all the models we describe later by maximizing the likelihood function (Watson,

1979) using an iterative search procedure STEPIT (Chandler, 1965). We repeated

all iterative searches several times, using di�erent starting positions, to insure we

obtained a global minimum.

2.5 Task overview

Two female subjects collected sensitivity measurements to vertically oriented, sin-

gle frequency Gabor patches using a two-interval forced-choice (TIFC) procedure.

An experimental session consisted of 128 or 144 trials in which the observer viewed
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two randomly interleaved staircases. The stimulus color direction and spatial pat-

tern remained unchanged in a session. The data presented here represent more

than 70; 000 forced-choice decisions.
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3 Results

3.1 Overview of the Three Nested Models

We evaluate how well our sensitivity measurements can be explained by �tting the

data with three related models. The three models form a nested sequence in that

each model in the sequence makes stronger assertions about the structure in the

data and has correspondingly fewer free parameters than the preceding model. We

describe the models qualitatively in the text, and we develop their mathematical

formulations in the appendix.

The psychometric model serves as a baseline measure of our ability to predict

performance. In this model we �t separately a Weibull psychometric function to

sensitivity data in each color direction and test pattern condition. Deviations

from this model are due only to failures of the psychometric function shape and

variability in the measurements. The psychometric model makes no assumptions

about the relationship between data from di�erent color directions or test pattern

conditions.

The pattern-dependent ellipsoid model adds the assumption that for each

test pattern, sensitivity to test lights in the di�erent color directions are related.

Speci�cally, the model is based on the idea that color coordinates of equally de-

tectable stimuli fall on an ellipsoid in color space. There is a simple intuitive

geometric interpretation of the pattern-dependent ellipsoid model. If the model

holds, then it is possible to apply a linear transformation to the color coordinates

such that equally detectable stimuli fall on a sphere. In this coordinate frame, the

probability of detection is predicted by the vector-length of the stimulus represen-

tation (see e.g., Macadam, 1942; Wyszecki and Stiles, 1982 pp. 654-689; Wandell,

1982, 1985; Poirson et al, 1990). The pattern-dependent ellipsoid model posits a

relationship between the sensitivity to stimuli of di�erent colors and of a single

test-pattern, but the model makes no assumptions relating the spatiochromatic

sensitivity to di�erent test patterns.

The pattern-color separable model adds the assumption that the three

visual mechanisms mediating sensitivity are pattern-color separable. This is the

strongest model, and it serves to test our main hypothesis. As we show in the

appendix this model predicts that there is a color coordinate frame in which the

ellipsoidal detection contours share the same principal axes. In this coordinate
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frame, the directions of these principal axes are equal to the color sensitivity of

the three visual mechanisms; the lengths of the axes are inversely related to the

pattern sensitivity of the mechanism. Hence, by �nding a color coordinate frame in

which the principal axes of the ellipsoids align, we can estimate the unique pattern

and color functions of the putative pattern-color separable visual mechanisms. The

pattern-color separable model is the strongest of the models because it speci�es

the relationship between data with di�erent test patterns and colors.

3.2 Evaluating the Models

Figure 1 shows results from one test pattern condition and three di�erent color

directions. The symbols and smooth curves represent percent correct responses and

�tted Weibull psychometric functions respectively. The vertical bars represent �1
standard deviation away from the predicted probability correct. As we explain

later, we use these standard deviations to equate errors between data having a

di�erent number of observations. In the psychometric model, the two psychometric

function parameters are free to vary separately for each test-pattern and color

direction. The psychometric functions �tted to these three data sets are typical

of all of the psychometric functions we have observed. When represented in cone

coordinates, sensitivity to di�erent color directions varies by as much as an order

of magnitude. The slopes of the psychometric functions for these colored, long-

duration and low spatial frequency patterns, as measured by the parameter �, are

generally near 2:0. Later when reasoning with our data, we sometimes use the test

vector that yields 82% correct detection on the psychometric function and call this

threshold detection sensitivity.

We measure how well each model �ts the detection data using a normalized

errormeasure, which we compute as follows. For each test stimulus and model, we

have an observed probability of correct detection, a predicted probability correct

from the psychometric curve, and the number of observations at each test stimulus

strength. Assuming that the responses are statistically independent, we can calcu-

late the standard deviation of the binomial distribution at each stimulus strength

given the number of observations and the predicted probability of a correct re-

sponse. We express the deviation of the observation from the prediction as the

di�erence between the observed and predicted probabilities of correct detection,

divided by the standard deviation. This we call the normalized error.
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Figure 1: The probability of correct detection as a function of stimulus strength

for stimuli in three color directions is shown. The smooth curves through the data

show the best-�tting Weibull psychometric functions. The vertical bars plot �1:0
standard deviation of the probability correct predicted from the function. The

stimulus spatial frequency was four cpd (obs. HT, constant cycle condition). The

three di�erent curves and associated symbols show sensitivity to stimuli in the

LMS color directions: (0,1,0), squares; (0.4, 0.4, 0.8), circles; (0,0,1), diamonds.
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We evaluate the quality of the model �ts by examining the normalized error

from all of the sensitivity measurements. Figure 2A shows the distribution of nor-

malized errors of the psychometric model for the two subjects in the constant size

condition, and Figure 2D shows the distribution of normalized errors for the one

subject in the constant cycle condition. The horizontal axis represents normal-

ized error and the vertical axis represents the number of conditions within each

histogram bin. If the error can be explained by independent, binomial variability

alone, and to the extent the normal approximation to the binomial is valid for

our sample sizes, the histogram should follow the normal curve superimposed on

the graph. In both conditions, and for all three subjects separately, the observed

normalized error is better than the predicted unit normal curve. Presumably, this

represents over-�tting of the data and a failure of the normal approximation for

some small sample sizes. We believe, however, that there are too many free pa-

rameters in this model and that the psychometric model �ts aspects of the data

that arise merely because of chance uctuations.

3.3 Evaluating the pattern-dependent ellipsoid model

The pattern-dependent ellipsoid model reduces the number of free parameters in

two ways. First, the model assumes that there is an ellipsoidal relationship among

the sensitivity parameters, �, for di�erent color stimuli of the same pattern. More-

over, the slope parameter � is assumed to be the same for all colors with a common

test pattern.

Figure 2B shows the normalized error histograms from �tting the pattern-

dependent ellipsoid model for the constant size condition and 2D shows the distri-

bution for the constant cycle condition. The normalized error frequency distribu-

tions have a slightly larger spread than the corresponding plot in the psychometric

model, but in both cases, and for all three subjects when analyzed independently,

the normalized error histograms of this model follow the standard normal distri-

bution closely.

Because there is good agreement between the measurements and the predictions

of the pattern-dependent ellipsoid model, the shapes of the detection contours must

fall close to ellipsoids when plotted in cone coordinates. We plot an example of

such a detection contour in Figure 3. We represent the three-dimensional data

set in terms of three cross-sections in cone coordinates. The data points in this
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Figure 2: Normalized errors of the di�erent model �ts are shown. Errors in the

constant size condition are shown in the upper panels (A,B,C; obs. HT and LW)

and errors in the constant cycle condition are shown in the lower three panels

(D,E,F; obs. HT). (A,D) Histograms of the normalized errors of the psychometric

model follow a normal curve that is narrower than the unit normal (shaded curve).

(B,E) The normalized error histograms for the pattern-dependent ellipsoid model

follow the unit normal curve closely. (C,F) The normalized error histograms of

the pattern-color separable model are slightly wider than the unit normal, but not

very di�erent from it. See the text for details.
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Figure 3: Threshold detection contours and observed threshold detection sensitivi-

ties are plotted in three cross-sections of cone coordinates. The solid curve in each

panel shows a planar cross-section through the origin of the best-�tting ellipsoidal

detection surface. The ellipsoid was estimated using the pattern-dependent ellip-

soid model �t to all 20 data points measured using 2:0 cpd patterns in the constant

cycle condition (obs. HT). The data points show threshold detection estimated by

�tting psychometric functions individually to data in eleven of the di�erent color

directions that happen to fall within one of cross-sections. Panel A shows a cross-

section in the (L;M) plane, (B) is a cross-section in the (L; S) plane, and (C) is

in the (M;S) plane. The units are cone contrast.
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�gure are taken from the constant cycle condition, using a two cycle per degree

(cpd) pattern. The data points represent threshold performance determined from

psychometric functions �t individually to data in eleven di�erent color directions

that lie in one of these planes. The smooth curves in each panel show the ellipse

predicted by the best �tting pattern-dependent ellipsoid model. The ellipsoid is

�t to measurements in all color directions, not just those measurements within the

planes. Were the pattern-dependent ellipsoid model perfect, data points would fall

precisely upon the ellipses. Visually, in this example and many others we have

inspected, the data points fall close to the the predicted ellipsoid. Hence, for each

test pattern equally detectable stimuli fall upon an ellipsoid in color space.

3.4 Evaluating the pattern-color separable model

Next, we test the pattern-color separable model. Figures 2C and 2F show the

normalized error distribution in the constant size and constant cycle condition

respectively. In both conditions the distribution is slightly broader than the plotted

standard normal curve and is quite similar to the distribution from the pattern-

dependent ellipsoid model, which uses many more free parameters.

The pattern-color separable model's quality-of-�t is impressive considering how

strongly it is constrained compared to the other two previous nested models. The

pattern-dependent ellipsoid model uses seven parameters to �t the data for each

test pattern, thus using 35 parameters to �t the constant size data. The pattern-

color separable model relates all the ellipsoids, even those measured using di�erent

test patterns. The pattern-color separable model uses six parameters to determine

the color space that applies to all patterns, three additional parameters for every

test pattern, plus one slope parameter, �, for all the data. Hence, this model uses

only 22 parameters to �t the entire data set. By comparing the normalized error

histograms in Figure 2, we �nd that the quality-of-�t is only slightly worse for the

separable model compared to the pattern-dependent model.
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3.5 Comparing pattern dependent and pattern color sep-

arable models

The normalized error histograms include data from all color and pattern conditions.

Hence, these histograms provide an overview of how well the models describe

performance. On the other hand, such an overview measure may mask systematic

failures of the models in �tting certain test patterns or colors. A second way to

examine how well the models �t is to study the pattern of the residual errors.

The two panels in Figure 4 show the di�erence between threshold detection

sensitivity determined by the psychometric model, and predictions from the best-

�tting pattern-dependent ellipsoid model (Fig. 4A) and pattern-color separable

model (Fig. 4B) for all the data collected in the constant cycle condition. In

order to plot the three-dimensional measurements in a two dimensional graph, we

use only the L-cone (x-axis) and M -cone (y-axis) values of the unit-length color-

direction vector, s. In this representation, the color direction that stimulates only

the S-cone plots at (0,0).

At each location we indicate larger errors in predicted threshold performance

by larger circle diameters. We indicate the direction of the error by the circle line-

type where solid and dashed circles denote predictions greater than and less than

expected respectively. To simplify the �gure, dots represent threshold performance

data that fall within 5% of the prediction. Were all of the threshold measures to

fall precisely upon the ellipsoids described by a model, all the errors would be

represented by dots. The circle with a cross-hair in the upper right corner of each

panel represents a 10% error.

We see no systematic di�erence between the two panels. Circle sizes and line-

types look similar in corresponding regions of the panels. This means that when

one model misses the other model misses in the same direction and by the same

amount. Furthermore, circle sizes are evenly distributed throughout both panels.

This means that there are no color directions or color planes in which one model

predicts the threshold performance data better overall. These results are similar

for our two subjects in both conditions and hold when we compare plots from

single test patterns as well. We conclude that the increase in error due to the

stronger assertions we impose are distributed evenly throughout the data and does

not provide just cause for rejecting the pattern-color separable model.
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Figure 4: Di�erence between threshold detection sensitivity determined by the

psychometric model and predictions from the pattern-dependent ellipsoid model

(A) and the pattern-color separable model (B) at various cone coordinates. We

indicate the test color direction by plotting the L-cone and M-cone values of the

unit-length color-direction vector, s. (The color direction that stimulates only the

S-cone plots at (0; 0)). The size of the error is shown by the circle diameter; solid

and dashed circles denote predictions that are greater or less than the observation,

respectively. Dots represent predictions that di�er from the observation by less

than 5%. The cross-hair circle in the upper right corner of each panel represents

a 10% error. The pattern of errors are distributed similarly for the two models.

Data are from subject HT in the constant cycle condition. See text for details.

17



0.5 1.0 2.0

Frequency (cpd)

S
en

si
ti

vi
ty

 (
lo

g1
0
)

4.0

1.00

0.50

0.00

-0.50

-1.00

S cone
L cone

Figure 5: Predicted and observed sensitivity measurements. The open circles and

�lled squares show threshold detection sensitivity to di�erent spatial frequency

stimuli in the L-cone and S-cone color directions, respectively. Solid lines represent

the predicted threshold detection sensitivity based on the pattern-color separable

model. The average di�erence between the model predictions and the measure-

ments is 0:035 log units.

3.6 Predicted pattern sensitivity functions.

As a third test of the pattern-color separable model, we used the estimated model

parameters to predict subject HT's performance in the constant cycle condition

to a new set of data. Speci�cally, we measured subject HT's pattern sensitivity

functions to new test stimuli at several spatial frequencies in the L-cone (circles)

and S-cone color directions (boxes). The threshold measurements are shown in

Figure 5 along with sensitivities predicted by the pattern-color separable model.

The average di�erence between the model predictions and the measurements is

0:035 log units, which is about the size of the measurement error. The �tted

model successfully predicts the new measurements.
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Table 1: Values of the color transformation matrix, T, for the best �tting pattern-

color separable model.

Subject function L M S Graph line type

HT, cc W-B 0.759 0.649 0.058 solid

R-G -0.653 0.756 0.033 dashed

B-Y -0.159 -0.414 0.896 dotted

HT, cs W-B -0.246 0.967 -0.072 solid

R-G -0.698 0.716 -0.005 dashed

B-Y 0.165 -0.599 0.784 dotted

LW, cs W-B 0.717 0.677 -0.164 solid

R-G -0.670 0.742 -0.029 dashed

B-Y 0.199 -0.682 0.703 dotted

3.7 Estimated separable color and pattern functions.

The pattern-color separable model provides a reasonable description of the sensi-

tivity data, with typical deviation in predicting the psychometric function data of

only slightly more than one normalized error unit. The �t of the separable model

is only slightly worse than the pattern-dependent model. The quality-of-�t, pre-

dictive ability and lack of patterned residuals of the pattern-color separable model

all warrant exposition of the color and pattern functions that can be derived from

the separable model.

As we described earlier in the text, and we show quantitatively in the appendix,

the visual mechanisms estimated by the �t of the pattern-color separable are sum-

marized in two linear transformations and the slope of the psychometric functions,

�. The color sensitivity is described by a linear transformation that converts the

stimulus cone absorptions into a new color coordinate frame. The pattern sensi-

tivities associated with each of the visual mechanisms is described by a diagonal

linear transformation whose entries are pattern-dependent functions and serve to

scale the axes of the new color representation. We have tabulated the entries of

the color transformation (Table 1), pattern-dependent functions (Table 2), and the

psychometric function slopes (Table 3) for each subject separately.
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Table 2: Values of the spatial sensitivity matrices, Df , for the best �tting pattern-

color separable model.

Subject frequency W-B (solid) R-G (dashed) B-Y (dotted)

HT, cc 0.5cpd 0.753 8.732 4.075

1cpd 1.226 8.044 2.567

2cpd 0.864 5.435 1.187

4cpd 0.683 2.536 0.266

HT, cs 0.5cpd 11.864 63.945 8.080

1cpd 18.037 74.214 7.212

2cpd 23.739 60.598 3.235

4cpd 28.354 31.746 3.379

8cpd 26.959 12.302 2.622

LW, cs 0.5cpd 4.981 60.556 6.575

1cpd 6.406 53.460 5.390

2cpd 11.081 36.944 3.785

4cpd 12.354 24.390 2.747

8cpd 9.550 19.513 3.706

Table 3: Slope parameters, �, for the best �tting pattern-dependent ellipsoid and

pattern-color separable models.

Model, frequency HT,cc HT,cs LW,cs

PDE, 0.5cpd 1.86 1.70 1.55

PDE, 1cpd 1.84 1.70 1.85

PDE, 2cpd 1.97 2.26 2.42

PDE, 4cpd 2.18 2.42 2.42

PDE, 8cpd - 2.52 2.01

PCS, all 1.95 1.82 1.94
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To provide an intuitive graphical representation of the color functions, we can

plot the relative wavelength sensitivity of the axes in the estimated color coordi-

nate frame. Figure 6A shows the average of the wavelength sensitivity functions

from the two subjects in the constant size condition1. It is of interest to note

that although we made no a priori assumptions about the form of these mecha-

nisms, still they can be classi�ed into one broadband mechanism and two spectrally

opponent mechanisms. These functions are quite similar to classically de�ned op-

ponent mechanisms measured using procedures such as hue cancellation (e.g., Hur-

vich and Jameson, 1957). Without implying that these functions are precisely the

same as the ones obtained in those experiments, we will refer to these functions as

white-black (solid line), red-green (dashed line) and blue-yellow (dotted line) color

functions.

Figure 6B shows the pattern sensitivity functions estimated in the constant size

condition using the separable model. Each pattern sensitivity function is associated

with one of the three color mechanisms. The white-black function shows a bandpass

characteristic peaking near 4 cpd in the constant cycle condition. The red-green

and blue-yellow pattern sensitivities are both lowpass.

Subject HT collected data in both the constant cycle and constant size con-

ditions. Figure 6C shows the color functions derived from �tting the separable

model to her constant cycle data. Qualitatively, the color functions derived in the

two di�erent conditions are quite similar. The zero-crossings of the functions fall

at approximately the same wavelengths. The functions di�er mainly by a scale

factor, as might be expected given the very di�erent spatial patterns and adapting

conditions that were used in these experiments.

The pattern sensitivity functions estimated in the constant cycle condition (Fig.

6D) di�er from those estimated in the constant size condition in two signi�cant

ways. First, subject HT was more sensitive in the constant size condition. Second,

the pattern sensitivity functions fall o� more rapidly with spatial frequency in the

constant cycle condition. Qualitatively, these di�erences in the pattern function

are expected based on the di�erences in the stimulus conditions, namely that the

background intensity in the constant cycle condition was ten times higher than

in the constant size condition, and the area of the test stimuli di�ered between

these two conditions. Increasing the background intensity decreases spatial pattern

1We represent the average results because the curves from the two subjects are quite similar.

Fits to the data from the individual subjects can be obtained from the values in Table 1.
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Figure 6: Color and pattern sensitivity functions derived from the data in the

constant size (upper panels) and constant cycle (lower panels) conditions. (A)

The average wavelength sensitivity functions of three mechanisms estimated from

the data of HT and LW in the constant size condition are shown. The solid curve

shows the sensitivity of the white-black mechanism, the dotted curve shows the red-

green mechanism, and the dashed curve shows the blue-yellow. (B) The pattern

sensitivity functions of the same three mechanisms, estimated in the constant size

condition. (C) The color sensitivity functions and the (D) pattern sensitivity

functions for the mechanisms estimated from observer HT's data in the constant

cycle condition are shown. In all panels, the color and pattern functions of a single

mechanism are drawn using the same linetype. The units are normalized so that

each mechanism's sensitivity at 0:5 cpd is 1:0. See the text for details.
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sensitivity, while increasing the number of spatial cycles in the stimulus increases

pattern sensitivity (see Graham, 1989).

We make a somewhat sharper comparison based on the following arguments.

We can adjust the pattern sensitivity for the change in background intensity by

shifting the constant cycle functions (on a logarithmic axis) so that corresponding

curves coincide at 2.0 cpd, since at this frequency the stimulus had approximately

the same spatial extent and number of cycles in both test conditions. The re-

maining sensitivity di�erences should be due to the area of test stimuli. At spatial

frequencies greater than 2 cpd, the constant cycle stimuli occupy a much smaller

area of the visual �eld than the constant size stimuli, while at lower spatial fre-

quencies the reverse is true. When we shift the curves in this way, it becomes

clear that within a given color pathway the subject is more sensitive to the spatial

stimulus that covers the larger area. Thus, most of the di�erences in the shapes of

the pattern sensitivity functions are probably due to the di�erences in the stimulus

area (Howell and Hess, 1978; Noorlander, Heuts and Koenderink, 1980).

Finally, we note that our derived pattern and color functions serve to describe

our subjects' sensitivity starting with a description of the stimulus on the display

device. Chromatic aberration within the eye will produce large changes in the

retinal image, especially for the S-cones (see e.g. Marimont and Wandell, 1993).

Can we factor out the inuence of purely optical components, the cornea and lens,

on these functions? To do this we need to estimate the retinal signal of our stimuli

and use these values in our pattern-color separable analyses. In our earlier study

(Poirson and Wandell, 1993) we found that axial chromatic aberration was the

primary cause for the loss of spatial resolution. Unfortunately in this study, after

estimating the retinal signal, we �nd that the data no longer serve to constrain

the parameters of our model adequately and yield unstable parameter estimates.

Anticipating the impact of chromatic aberration while collecting data is important

in order to adequately sample retinal color space and constrain our model.
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4 Discussion

The pattern-color separable model provides a framework for thinking about how

di�erent visual pathways might contribute to visual sensitivity. Speci�cally, we can

calculate how the mechanisms estimated by the model each contribute in predicting

the subject's sensitivity to di�erent spatiochromatic stimuli. In this section, we

analyze the contribution of the di�erent estimated mechanisms in two types of

experiments. First, we estimate how the separate visual mechanisms contribute to

the subject's pattern sensitivity curve for patterns that all share a common color

direction. Second, we estimate how the separate visual mechanisms contribute to

color sensitivity measured using a single test pattern. We use the pattern-color

separable model �tted to subject HT's data in the constant cycle condition in our

analysis.

4.1 Mechanism contributions to pattern sensitivity.

Using the pattern-color separable model, it is possible to estimate how each of the

individual visual mechanism contributes to pattern sensitivity. Figure 7 shows the

relative contributions of the di�erent mechanisms for various test patterns in the

color direction, (s = 1=
p
3; 1=

p
3; 1=

p
3). The thick solid line shows the predicted

behavioral pattern sensitivity function. The thin solid, dashed and dotted curves

falling below the performance prediction represent the contribution of the three

pattern-color separable mechanisms.

It is possible to make a comparable �gure for any color direction. As the color

direction varies, the shape of the predicted pattern sensitivity function varies. Since

the mechanisms are pattern-color separable, the shapes of the underlying pattern

sensitivity functions remain the same; only their relative vertical position change

to yield a di�erent overall performance curve.

As we see from Figure 7, all color pathways can contribute to pattern sensitivity

measurements made using conventional methods, particularly in the low spatial

frequency regime. To measure the pattern sensitivity of one mechanism alone, we

would need to use lights in color directions that do not stimulate the two unwanted

mechanisms. In our conditions, we can estimate these color directions from the

color transformation matrix in Table 1. For example, to isolate a response from

the white-black pathway, one should choose a stimulus with color direction close
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Figure 7: The predicted behavioral pattern sensitivity (thick solid curve) and

the relative contributions to pattern sensitivity by three estimated mechanisms

are shown. The behavioral prediction and the individual mechanism sensitivi-

ties are based on the best-�tting pattern-color separable model in the constant

cycle condition (HT,cc). The estimates are based on a test color direction,

(s = 1=
p
3; 1=

p
3; 1=

p
3). The solid, dashed and dotted lines show the contribu-

tion to the overall pattern sensitivity by the white-black, red-green and blue-yellow

mechanisms respectively.
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to (0:70; 0:59; 0:40) because this is the only color direction that simultaneously

silences the red-green and blue-yellow mechanisms.

In our conditions, the stimulus that isolates the white-black pathway is not

equal to a modulation of the background light intensity. This is a disturbing ob-

servation because modulation of the background light intensity is the conventional

stimulus used to measure pattern sensitivity. In our experiments, the color direc-

tion of the background light is (0:76; 0:60; 0:24), and this stimulus evokes a response

in all three mechanisms. Using a 0:5 cpd test pattern, the relative excitation of

the white-black, red-green and blue-yellow mechanisms of an intensity modulation

of the background is (0:72;�0:30;�0:63).
By examining the contributions of the di�erent color mechanisms to pattern

sensitivity in Figure 7, we can see that the pattern-color separable model is a mul-

tiple spatial frequency channels model: three separate pathways coexist within a

single region of the visual �eld, and each pathway has a di�erent pattern sensitivity.

This is not the same, however, as conventional multiresolution models (e.g. Camp-

bell & Robson, 1968; Graham & Nachmias, 1971) in which the pattern sensitivity

in one color direction requires a multiresolution representation. In our modeling

the di�erent spatial resolutions covary with the mechanism color sensitivities. We

have not included such within pathway channels in our analyses because the �t to

our data set without postulating these additional channels seems adequate (cf Fig.

2), and we do not have the additional data that might allow us to test this idea

within a pattern-color separable framework.

4.2 Mechanism contributions to color sensitivity.

Just as it is possible to explain channel contributions to sensitivity measured at

various spatial frequencies for a �xed color direction, so too we can separate out

channel contributions to sensitivity measured in di�erent color directions for a

�xed spatial pattern. For this exposition we must visualize the sensitivity of the

underlying visual mechanisms in three dimensional color space.

Suppose we have a visual system composed of one pattern-color separable mech-

anism that responds only to L-cone stimulation. Detection occurs when the stim-

ulus increases or decreases the L-cone response by a criterion amount, �. The set

of stimuli at detection threshold fall upon a pair of planes perpendicular to the
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L-cone axis. One plane represents mechanism threshold for stimulus increments

(L = +�) and the second plane represents threshold for decrements (L = ��).
If the mechanism spectral sensitivity depends on a weighted sum of signals from

the three cone types, the orientation of the planes will change. Hence, the separa-

tion between the planes is the geometric counterpart of the mechanism's pattern

sensitivity, and the orientation of the planes is the geometric counterpart of the

mechanism's color sensitivity.

The pattern-color separable model has three visual mechanisms and therefore

three pairs of parallel mechanism planes. Because signals from the mechanisms are

combined using a vector-length rule, equally detectable test vectors are predicted

to fall upon an ellipsoidal surface bounded by the mechanism planes.

It is di�cult to visualize the six planes and the ellipsoid in a two-dimensional

drawing, but it is possible to get a sense of the geometric relationship between these

entities by examining planar cross-sections. For example, Figure 8 shows the cross-

section of this three-dimensional picture in the (L-cone,M -cone) color plane. In

cross-section the ellipsoids become ellipses and the parallel planes become parallel

lines.

Figure 8A shows that for the 0:5 cpd pattern, thresholds in the (L;M) color

plane are determined mainly by signals from the blue-yellow and red-green mecha-

nisms. The parallel lines representing the sensitivity of the white-black mechanism

are fairly far from the ellipse indicating that this mechanism contributes very little

to the observer's sensitivity for most of the plotted color directions. Figure 8B

shows that for the 2:0 cpd pattern the ellipse is now bounded by the parallel

planes corresponding to the red-green and white-black mechanisms; the blue-yellow

mechanism is quite distant. This trend continues so that when the test is 4:0 cpd

(Figure 8C) the blue-yellow mechanism does not even appear within the graph.

These plots show how the three mechanisms contribute to the visibility of the

di�erent frequency test patterns. For all three patterns, the red-green mechanism

determines sensitivity for color directions perpendicular to the major axis of the

ellipse. For the 0:5 cpd target, the blue-yellow mechanism determines sensitivity

in the direction perpendicular to the minor axis, while for the higher frequency

targets the white-black mechanism determines sensitivity in these color directions.

Notice that across the di�erent panels in Figure 8 the orientation of the lines rep-

resenting the di�erent mechanisms remains constant. The unchanging orientation

of these lines is the geometric counterpart of pattern-color separability. Changing
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Figure 8: The predicted behavioral color sensitivity (solid ellipses) and the relative

contributions to sensitivity by three estimated pattern-color separable mechanisms

are shown. The predicted behavioral sensitivity and the mechanism sensitivities

are plotted in the (L;M) plane, representing a cross-section of the full three-

dimensional predictions. Each mechanism's contribution to visual sensitivity can

be estimated by how closely the lines bound the elliptical detection contour. The

di�erent visual mechanisms are shown using the solid, dotted and dashed line

types as in previous �gures. Panels A,B, and C show predictions for test patterns

at 0:5 cpd, 2:0 cpd and 4:0 cpd respectively. Because mechanisms are pattern-color

separable, the mechanism threshold contours always plot at the same orientation,

changing only their distance from the origin with the test pattern. The units are

cone contrast. See the text for details.
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the test pattern alters the separation between the lines corresponding to the mech-

anism's pattern sensitivity. But each mechanism's color sensitivity, indicated by

the orientation of the lines, remains invariant as the pattern changes.

The graphs in Figure 8 show that across these measurement conditions, we

expect that the basic orientation of the elliptical detection contour will remain the

same; the contour only changes in size. However, the visual mechanisms determin-

ing sensitivity do change signi�cantly. This graph makes plain one of the logical

di�culties in trying to infer visual mechanisms from the shape of one ellipsoid

alone ( e.g. Chaparro et. al, 1993).
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5 Conclusion

We began this paper by asking how pattern and color information are organized

jointly within the visual system. Our measurements of pattern-color sensation are

explained by the responses of three pattern-color separable mechanisms combined

using a vector-length decision rule. Separability implies that pattern and color

information are represented simultaneously in the separate pathway responses,

without confound. To estimate color responsivity, then, one need not be con-

cerned about the stimulus pattern. To estimate pattern responsivity, one need

not be concerned about the stimulus wavelength. This is a sensible and e�cient

organization.

We have derived the spectral and spatial tuning functions of the pattern-color

separable visual mechanisms using all of our sensitivity measurements. Neither our

experimental methods nor our data analyses presupposes a second site opponent-

colors representation of wavelength, yet our derived spectral functions are charac-

teristic of white-black, red-green and blue-yellow responsivity. We use the model

to estimate the contribution of each component mechanism to overall performance

in one color direction and di�erent test patterns (Figure 7) and also for �xed test

patterns and di�erent color directions (Figure 8).

Obtaining pattern-color separability from the responses of peripheral neurons is

no easy computational task. Axial chromatic aberration and the spatial receptive

�elds of retinal ganglion cells serve to confound color and pattern information.

Yet, the performance of our observers is consistent with a representation in which

the pattern and color information is separable once again. Our results suggest that

identifying the neuronal substrates of pattern-color separable responses will bring

us closer to the neuronal representation of visual appearance.
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6 Appendix: Formal Description of the Models

6.1 Pattern-dependent ellipsoid model

The pattern-dependent ellipsoid model assumes that for each pattern there is a

color coordinate frame in which the sensitivity to a color stimulus depends only

on its vector-length. This model has been described and evaluated by Poirson et

al. (1990), Knoblauch and Maloney (1995) and others cited therein.

Speci�cally, we apply a pattern-dependent linear transformation, Af , to the

test stimulus, Afs, and compute the vector-length by,

kAfsk = ([Afs]
t[Afs])

1

2 = ksk(stAf
tAfs)

1

2 = ksk(stQfs)
1

2 (6)

where Qf = At
fAf . The vector-length in the transformed coordinate frame is

proportional to the vector-length in the initial coordinate frame. The constant of

proportionality is (stQfs)
�

1

2 .

To test the pattern-dependent ellipsoid model we substitute � = (stQfs)
�

1

2 in

Equation 5 and estimate the six parameters of the quadratic, Qf , and the one slope

parameter, �. We analyze the data from each test pattern, f , separately. Notice

that the quadratic form speci�es the o�set parameter, �, for each color direction.

This allows us to �t one psychometric function to sensitivity data measured in

more than one color direction. The pattern-dependent ellipsoid model is stronger

than the psychometric model since � and the six parameters determining � are

the same for every color direction; these parameters depend only on the spatial

pattern of the test.

As we have explained elsewhere, when we �t a quadratic model to a collec-

tion of threshold data using a single pattern, we recover a unique estimate of

the quadratic, Qf . We cannot, however, recover a unique estimate of the linear

transformation, Af (Poirson et al., 1990). Hence, the pattern-dependent ellipsoid

model does not permit us to estimate uniquely a set of mechanisms determined by

the transformation, Af . We can estimate this transformation by �tting data from

all test patterns simultaneously, as we do in the next model.
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6.2 Pattern-color separable model

The pattern-color separable model extends the pattern-dependent ellipsoid model

by assuming that the collection of linear transformations, Af , are all related.

Speci�cally, we assume that all of the linear transformations can be described

as a single color transformation that is independent of the test pattern, followed

by a scaling of the new color function responsivities by factors that depend only

on the test pattern frequency.

The independence of the color and pattern transformations implies that the

matrix Af in equation (Eq. 6) can be factored into two terms,

Af = DfT : (7)

The color matrix T de�nes a transformation from the original receptor absorptions

into new color function responses. This matrix is �xed and independent of the

stimulus. The diagonal second matrix, Df , scales each of the axes in the new

color coordinate frame and depends on the test pattern, f . We can express the

quadratic form of the pattern-color separable model in terms of the two matrices,

Df and T, such that

Q0

f = (DfT)
t(DfT) : (8)

To test the pattern-color separable model we use the restricted pattern-color

separable quadratic, Q0

f , instead of the general quadratic, Qf , in Equation 6.

Analogous to the pattern-dependent ellipsoid model, we substitute the psychome-

tric function o�set parameter, �, with (stQ0

fs)
�

1

2 . We search for the six parameters

of the color matrix T, the entries in the diagonal matrices Df , and the one slope

parameter, �, to �t this model to a subject's entire data set.

The pattern-color separable model is stronger than the pattern-dependent ellip-

soid model for two reasons. First, all of the quadratics, Q0

f , must be decomposable

into the form given in Equation 8 and share the same color transformation T. Sec-

ond, we use the same slope parameter, �, for all di�erent test pattern frequencies.

The condition that the axes of the ellipsoidal iso-detection surfaces from di�erent

test patterns must align is equivalent to saying that all of the quadratics describing

the surfaces must share the common color transformation T.
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6.3 Estimating the Color and Pattern Functions

The parameters in matrix T de�ne the three mechanisms' color functions. We

calculate a mechanism's spectral responsivity as follows. Suppose tij is the ijth

entry of T. The ith mechanism's spectral responsivity is then ti1L(�) + ti2M(�) +

ti3S(�).

The mechanisms' pattern sensitivities are given by the diagonal matrices Df .

The (1; 1) entry in the Df matrices de�ne the pattern sensitivity for the color

function de�ned by the �rst row of matrix T and pattern f . The second and

third pathways' pattern sensitivities are de�ned by the (2; 2) and (3; 3) entries

respectively.

The relative values of the color and pattern functions are unique. The absolute

values of the color and pattern sensitivities are not unique. Any vertical shift in

a given pattern sensitivity can be compensated by scaling the sensitivity of the

corresponding color function. We have chosen to scale the pattern functions in

Figure 6 so that amplitude sensitivity at 0:5 cpd equals 1:0.
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