A Programmable Digital Camera Architecture Multiple Capture Single Image

B. Wandell, P. Catrysse, J. DiCarlo, D. Yang, A. El Gamal Image Systems Engineering (EE) Stanford University http://smartcamera.stanford.edu/pdc.html

Outline of the Presentation

- Camera architecture lab
- CMOS sensor (PDC '98)
 - Pixel-level ADC
 - Programmable features
- Programmable digital camera architectures
 - Transduction
 - Temporal programming: Dynamic range
 - Spatiotemporal: Intensity resolution

Experimental Lab: Overview

Experimental Lab: Sensors

Experimental Lab: FPGA

Programming overview

PDC Sensor '98

- Pixel-level ADC
- CMOS (4.5 transistors/pixel)
- Feature size: $0.35 \,\mu$
- Pixel size: 10μ
- Light Sensitivity
 - Fill factor: 23 percent
 - QE: 4 percent

Sensor: Pixel-level architecture

Sensor: Quad pixel layout

Programmable Digital Camera Algorithms

- Single Capture temporal integration
- Multiple Capture Single Image (MCSI)
 - Transduction
 - Temporal programming: Dynamic range
 - Spatiotemporal: Intensity resolution

Single Capture: Integration Time

Single Capture: Digital encoding

Single Capture: Transduction

MCSI: Integration Times

MCSI: Digital Encoding

MCSI: Digital Encoding

MCSI: Dynamic range

1024ms

Multiple integration times increases dynamic range

64ms

16ms

MCSI: Dynamic Range

Integrated image using DiCarlo Algorithm

MCSI: Transduction

- The FPGA timing and comparator levels can be controlled, so
 - The transduction function can be varied between frames
 - The quantization levels can be selected freely (up to noise considerations)

MCSI: Example Transduction

 $\gamma = 2.0$

 $\gamma = 0.5$

 $\gamma = 1.0$

MCSI: Standard transduction

MCSI: Programmable Transduction

MCSI: Time/Level Optimization

2-bit device, 25ms Sampling separation 7 bit (linear) device needed

Desired

MCSI: Intensity resolution

Multiple captures permits averaging for better SNR and for better range

MCSI: Intensity resolution

To improve to intensity resolution we must account for the noise and quantization bins

MCSI: Frame averaging

Averaging improves intensity resolution, as shown by increased slope

MCSI: Programmable Spatial Resolution

- The electrons collected in groups of four pixels can be read out separately or summed.
- Under low lighting conditions, one might sacrifice spatial resolution to increase sensitivity.

MCSI: Programmable Resolution

Trade spatial resolution against photon sensitivity by combining photons of combination of quarter images

Spatial resolution: 640*512

Spatial resolution: 320*256

MCSI: Spatial estimation

MCSI: Contrast sensitivity

Single capture

16 ms

Multiple capture

20 ms

MCSI: Contrast sensitivity

MCSI: Simulator

Continuous Contrast Ramp = $-0.0225 \rightarrow 0.0225$

Summary and Conclusion

- New sensor technology requires new algorithms
- Programmable to optimize for applications
- CMOS pixel-level ADC
 - Frame rate
 - Memory
 - Integrated processing