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Abstract

We show how to compute and to use the wavelength-dependent optical transfer function
(OTF) to create color matches between spatially patterned images. We model the human OTF
as a defocused optical system with a circular aperture. In our model, the defocus arises from
axial chromatic aberration and wavelength-independent aberrations. From the computed OTF,
it is apparent that high spatial-frequency components of the image can play little role in contrast
and color appearance, and that in the spatial-frequency range from 5-20 cpd, the visual system
is dichromatic because there is no contrast in the short-wavelength receptor signal. We show
how to use the wavelength-dependent OTF to match color images across displays by setting
matches in corresponding spatial-frequency bands. Because chromatic aberration so affects the
OTF, this new procedure is a significant improvement over the conventional procedure of set-
ting matches point by point.

1 Introduction

The color-matching experiments play an important role in basic color science and applications of
color science. The color-matching experiments are the key behavioral experiments that define the
relationship between the intial encoding of light by the photopigments and the physiological re-
sponse of the photoreceptors [1, 18]. The experiments are also an essential component of the in-
dustrial standards of color image representation [26].

The color-matching experiments used to define the properties of the encoding of light in the
CIE’s 1931 and 1964 standards are based on relatively large, uniform fields. When we restrict our
analysis of the photoreceptor absorptions to large, uniform fields, we can avoid the effects of axial
chromatic aberration for color matching. When we begin to consider matches between images with
spatial patterns, however, we must consider the impact of axial chromatic aberration, the largest
ocular aberration.
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Our main purpose in this paper is to consider the implications of axial chromatic aberration for
color matching. Axial chromatic aberration causes a different amount of defocus for each wave-
length incident at the cornea. Because axial chromatic aberration involves both the wavelength and
spatial pattern of the image, it blurs the line dividing the fields of color and pattern vision, and it
requires a joint treatment of pattern and color.

We report on our study of how axial chromatic aberration influences the photoreceptor absorp-
tions of patterned stimuli, such as the images on color displays. We describe our analysis of the im-
pact of chromatic aberration on the basic CIE colorimetric standards for establishing color matches
across different display media.

In the pages that follow, we describe a collection of methods to clarify how axial chromatic
aberration transforms the corneal image into a retinal image. We base our calculations on an anal-
ysis of the chromatic aberration of a diffraction-limited optical system with a circular aperture de-
scribed by Hopkins (1955) [11]. We implement Hopkins’ calculation using the parameters of the
human eye [12, 22, 15, 2, 21, 19, 4], and we use the results of Williams et al. [24] to incorporate
the wavelength-independent aberrations. We have tried to understand the effect of axial chromatic
aberration by considering a series of graphical characterizations of the system transformation and
by examining the consequences of axial chromatic aberration for several test stimuli.

1.1 Main Theoretical Result

Conventional colorimetric practice is to establish color matches between uniform fields by equating
the effects of the two displays on the photoreceptors. A principle result of colorimetry is that when
we match two images on emissive displays, such as two television monitor images, the primary
intensities needed to match across two displays are related by a linear transformation (represented
by a three-by-three matrix).

Current practice generalizes color-matching from uniform fields to patterned fields by estab-
lishing point-by-point matches between the two images. This generalization of the color-matching
procedure is incorrect because it fails to account adequately for the effect of axial chromatic aber-
ration on the formation of the retinal image. The main difficulty with this procedure is that axial
chromatic aberration blurs the retinal images of image points, and the amount of blurring may dif-
fer for corresponding points from the two images. Hence, matching images point by point is not in
general equivalent to matching retinal images point by point.

We show that the correct procedure is to transform the display primary images into the spatial-
frequency domain. To the extent that the optics of the eye acts as a shift-invariant linear system,
the sinusoidal components in the displays will also be imaged as sinusoidal components. When we
represent the display primary images as sums of spatial frequencies, rather than sums of points, the
simple color-matching rules generalize properly. The amplitudes of the spatial-frequency compo-
nents of the three primaries needed to match across the two displays are related by a linear trans-
formation that depends on spatial frequency. The linear transformation between the intensities of
the uniform images is simply a special case.
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1.2 Overview

In Section 2 we describe our implementation of axial chromatic aberration. In Section 3 we intro-
duce several graphical methods of illustrating the effects of chromatic aberration on the formation
of the retinal image, we incorporate the effects of wavelength-independent aberrations on the reti-
nal image, and we analyze the impact of chromatic aberration on photopigment absorptions. In
Section 4 we describe the implications of our analysis for the practical problem of equating images
displayed on devices with different emissive primaries.

2 Methods

2.1 The OTF of the model eye

Hopkins (1955) [11] calculated the optical transfer function (OTF) of a defocused system with a
circular aperture. He assumed a defocused system with no other aberrations. His formula expresses
the OTF as a function of reduced spatial frequency s, defocus w20, and wavelength �. Hopkins
showed that the OTF is circularly symmetric and thus can be characterized using one-dimensional
patterns. Correspondingly, in the spatial-frequency domain, we can define the OTF as a function of
a single spatial-frequency parameter, the reduced spatial frequency, which ranges from 0 to 2. (The
upper limit defines the diffraction-limited spatial-frequency cutoff.) The variable w20 is a measure
of defocus with respect to optical path length error. The variable � is the wavelength of the incident
light. We refer to the Hopkins OTF as H(s;�;w20).

Hopkins’ formula for the OTF is

H(s;�;w20) =
4

�a

Z q
1�( s

2
)
2

0

sin[a(
q
1� y2 �

jsj

2
)]dy; (1)

where

a =
4�

�
w20jsj:

We can use this form of the OTF for numerical computation. Hopkins also showed, however, that
the formula can be integrated in closed form (see Appendix A).

Two aspects of Hopkins’ formulation are inconvenient for our calculations. First, we prefer
to express the frequency variable in terms of cycles per degree � rather than the reduced spatial
frequency. We convert from reduced spatial frequency to cycles per degree using the formula

s = c �
�

D0p
�; (2)

where c is degrees per meter for the human eye, D0 is the dioptric power of the unaccommodated
eye, and p is the radius of the entrance pupil in meters. This relationship is derived in Appendix B.
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s reduced spatial frequency
� wavelength in meters
w20 optical path length error
H(s;�;w20) Hopkins OTF
p radius of entrance pupil in meters
c degrees per meter for the human eye
� spatial frequency in cycles per degree
D0 dioptric power of the eye at in-focus wavelength
D(�) relative defocus of the eye as function of wavelength
q1; q2; q3 parameters relating defocus in diopters to wavelength
x spatial location in degrees of visual angle
f(x; �); F (�; �) corneal image and Fourier transform in x
g(x; �); G(�; �) retinal image and Fourier transform in x
om(x; �); Om(�; �) impulse response and OTF for Hopkins’ model
Od(�) diffraction-limited OTF (at the in-focus wavelength)
K(�) scale factor that models wavelength-independent aberrations
o(x; �); O(�; �) impulse response and OTF for combined model
Ai(�) absorption curve of ith photopigment
Ri(�; �) wavelength sensitivity of ith photopigment, measured through optics
W range of visual wavelengths
Pi(�) Fourier transform spatial pattern of ith photopigment absorptions
Mj(�) SPD of jth display primary
fm(x; �); Fm(�; �) display image and Fourier transform in x
sj(x); Sj(�) spatial pattern of jth display primary and Fourier transform
Cij(�) scaled OTF from jth display primary to ith photopigment
P� vector whose ith entry is Pi(�)
S� vector whose jth entry is Sj(�)
C� matrix whose ijth entry is Cij(�)

Table 1: Mathematical Symbol Definitions.

Second, because empirical measurements of defocus caused by axial chromatic aberration are
reported in terms of diopters, we need an expression to relate relative defocus in diopters, D(�),
and the variable w20. We use the formula

w20(�) =
p2

2
�

D0D(�)

D0 +D(�)
: (3)

This relationship is derived in Appendix C. At the in-focus wavelength, D(�) = 0, so w20 = 0 as
well.

Finally, we use a formula derived by Thibos et al. (1992) [21] to calculate the relationship
between defocus in diopters and wavelength. They express defocus using the equation

D(�) = q1 �
q2

�� q3
; (4)
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Figure 1: Defocus as a function of wavelength.

where � is wavelength in micrometers, and D(�) is defocus in diopters. The values for the param-
eters that we use are q1 = 1:7312, q2 = 0:63346, and q3 = 0:21410, which imply an in-focus
wavelength of 580 nm. (The value for q1 differs slightly from that used by Thibos et al. (1992) be-
cause they used an in-focus wavelength of 589 nm.) We plot the data from Wald and Griffin (1947)
[22] and from Bedford and Wyszecki (1957) [2], along with the predicted curve, in Figure 1 (see
also Figure 6 in Thibos et al. (1992)) [3].

Hopkins’ equations permit us to calculate the OTF of a defocused optical system. We use Equa-
tion 2 to convert spatial frequency, �, to reduced spatial frequency, s. We convert wavelength to
relative defocus (Equation 4) and then to w20 (Equation 3). The reduced spatial frequency, w20,
and wavelength are all that is required to use Hopkins’ original formula (Equation 1). We call the
OTF for retinal image formation Om(�; �).

2.2 Computing Retinal Images

We can use the OTF to compute one-dimensional retinal images as follows. We denote the one-
dimensional corneal image by f(x; �), where x is the spatial position (degrees of visual angle)
and � is wavelength (meters). We denote the corresponding retinal image as g(x; �). We denote
the Fourier transform of these images with respect to the spatial variable, x, using capital letters,
F (�; �) and G(�; �).

The OTF Om relates the Fourier transform of the corneal image, F (�; �), to the Fourier trans-
form of the retinal image G(�; �), via

G(�; �) = F (�; �)Om(�; �) :

We can also perform the calculation in the space domain using the convolution operation. We
use o(x; �) to denote the inverse Fourier transform of the OTF. The corneal and retinal images are
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Figure 2: Two views of the optical transfer function of the model eye with a pupil diameter of 3:0
mm.

related by
g(x; �) = f(x; �) � o(x; �);

where � denotes convolution in the spatial variable. The function o(x; �) is the linespread function
of the optical system.

2.3 Selection of Constants

The computations we report are all based on a few fixed constants. The values for c and D0 are
taken from Wyszecki and Stiles (1982) [26]. The value for c, 3434:07, comes from Table 2(2.4.1);
it is the multiplicative inverse of meters per degree. The value for D0, 59:9404, comes from Table
1(2.4.1); it is the dioptric power of the unaccomodated eye, for the full theoretical eye of LeGrand.

3 Results

3.1 The OTF

We have calculated the OTFs in the range of visual wavelengths according to the methods of the
previous section. Figure 2 collects the resulting OTFs at each wavelength into a single surface plot;
two views of this plot are shown. One dimension of the plot is spatial frequency of the image, and
the second dimension is wavelength. The values along a single wavelength value define the one-
dimensional optical transfer function of a diffraction-limited optical system with the same chro-
matic defocus as the human optics. The values along a single spatial-frequency value define the
wavelength transfer function of the model eye at that spatial frequency. The OTF shown is based
on a 3.0 mm pupil diameter.

Except at low spatial frequencies, only the band of wavelengths near the in-focus wavelength
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contributes significant contrast to the image. As Figure 2 shows, this band becomes narrower as
spatial frequency increases. The tendency towards monochromacy is present at all pupil diameters,
but it is most dramatic for large pupil diameters.

3.2 Wavelength-Independent Aberrations

While axial chromatic aberration is a major source of optical defocus, other aberrations contribute
as well. To bring our analysis of the human retinal image into closer agreement with empirical ob-
servations, we use the results from Williams et al. (1995) [24] to describe the effects of wavelength-
independent aberrations (also known as monochromatic aberrations). These authors measured the
optical transfer function of the human eye with interferometric and double-pass methods. In the
absence of any aberrations, the OTF of the human eye is diffraction-limited at the in-focus wave-
length. Because their stimulus was a monochromatic light, and the observer’s eye was in focus
for the wavelength of that light, the difference between the observed and diffraction-limited OTFs
is an estimate of the effect of wavelength-independent aberrations. Williams et al. modeled the
observed OTF as the product Od(�)K(�), where Od(�) is the diffraction-limited OTF at the rele-
vant wavelength, and K(�) is a scale factor that reduces the diffraction-limited OTF at each spatial
frequency. Hence, the scale factor captures the effects of the wavelength-independent aberrations.
Their estimate of the scale factor is

K(�) = 0:3481 + 0:6519 exp(�0:1212�): (5)

We can use this wavelength-independent scale factor K(�) to estimate a combined OTF that
incorporates both (axial) chromatic aberration and wavelength-independent aberrations. We obtain
the combined OTF, denoted O(�; �), by multiplying the Hopkins OTF at every wavelength by the
scale factor:

O(�; �) = Om(�; �)K(�):

Figure 3 shows a surface plot of the combined OTF. The inset shows the relationship of the
Hopkins OTFOm at the in-focus wavelength, where it is diffraction-limited, and the combined OTF
O, derived using the Williams et al. expression.

3.3 The Linespread

Figure 4 collects the linespread function at each wavelength into a single surface plot. One dimen-
sion of the surface plot is spatial position, and the second dimension is wavelength. Figure 4 il-
lustrates that short-wavelength light from a line source will spread roughly half a degree of visual
angle across the retina. Because the pointspread is circularly symmetric, it can be calculated from
the linespread (see Goodman (1968) [9]).
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Figure 3: The optical transfer function of the model eye, including wavelength-independent aber-
rations; inset, the Hopkins OTF (Om), and the OTF including wavelength-independent aberrations
(O), at the in-focus wavelength.

3.4 Photopigment Absorptions Measured Through the Optics

The photoreceptors that contain the photopigment within the eye form a discrete sampling grid.
When we calculate a continuous pattern of photopigment absorptions, as in Equation 6 below, we
treat the photopigment as if it forms a continuous sheet within the eye. The continuous sheet calcu-
lation segregates image formation from photoreceptor spatial sampling; the spatial color matches
we compute do not depend on the photoreceptor sampling mosaics or image translations.

Chromatic aberration implies that the spectral responsivity of the receptor photopigment, mea-
sured through the optics, will vary with the spatial frequency of the stimulus. To see how this comes
about, consider the following thought experiment. Suppose we measure the spectral responsivity
of the photoreceptors using monochromatic sinusoidal targets imaged through the optics. We mea-
sure the photopigment absorption by drifting a monochromatic sinusoidal pattern and measuring
the amplitude of the time-varying absorption rate.

When measured through the optics, the photopigment absorptions will depend on both the trans-
mission through the optics and the spectral absorbance of the photopigment. The transmission through
the optics depends on the wavelength and spatial frequency of the input as described by the function
O(�; �). Suppose we call the absorption curves of the three photopigments Ai(�); i = 1; 2; 3: The
photopigment absorption, measured through the optics, depends on both the spatial and wavelength
variables by the following definition,

Ri(�; �) = O(�; �)Ai(�):

The function Ri generalizes the photopigment absorption curves, Ai. Of course, the absorption
curves of the photopigment molecules themselves are independent of spatial frequency. We propose
this generalization because it is convenient for analysis and computation, but it applies only when
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Figure 4: The linespread of the model eye, including wavelength-independent aberrations.

the photopigment absorption curves are measured through the optics.

When we compute the photopigment absorptions, Pi, from a uniform field with spectral power
distribution F (�), we use the formula

Pi =
Z
W
Ai(�)F (�)d� ;

where W is the range of visual wavelengths. But when we compute the Fourier transform of the
spatial pattern of photopigment absorptions, Pi(�), from an image with Fourier transform F (�; �),
we replace the Ai with the functions that depend on spatial frequency, Ri, and use the formula

Pi(�) =
Z
W
Ri(�; �)F (�; �)d�: (6)

The plots in Figure 5 illustrate how the photopigment absorption curves of the model eye, mea-
sured through the optics, vary as a function of spatial frequency. The surfaces in the left column plot
photopigment absorption as a function of stimulus wavelength and spatial frequency. The curves
in the right column plot the three cone responsivities at selected spatial frequencies. Chromatic
aberration obliterates the short-wavelength cone response beyond a few cycles per degree. It also
changes the shape and peak value of the other two cone classes. When measured through the op-
tics, the cone photopigment spectral responsivity depends strongly on the spatial frequency of the
stimulus. Consequently, different spatial-frequency bands are encoded using sensors with radically
different color tuning.

The differences in the sensor absorbances at different spatial frequencies are so large that it is
meaningless to compare the wavelength composition of spatial patterns at different spatial frequen-
cies. The inability to compare wavelength information across spatial scale suggests a reason for the
nervous system to select a multiresolution representation of image information. Photopigment ab-
sorption ratios within a spatial-frequency band are a meaningful measure of the spectral power dis-
tribution of the incident light. But, because of chromatic aberration, comparison across spatial fre-
quencies is not meaningful. Within a spatial-frequency band, comparisons of photopigment aborp-
tions require, at least temporarily, a multiscale image representation.
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4 Applications

In this section we derive the procedure for creating photopigment absorption matches between two
color images using displays with different primaries.

The classic prediction of photopigment absorptions, for large uniform areas, expresses the rela-
tionship between display primary intensities and the photopigment absorptions using a small matrix
multiplication. If we group the three primary intensities in a column vector,m, there is a three-by-
three matrix, C0, such that the product C0m equals the three photopigment absorptions to a spa-
tially uniform field.

Because of chromatic aberration, this calculation does not generalize to point-by-point matches
within an image. The generalization fails because the spatial pattern of photopigment absorptions
depends on the wavelength composition of the point, making it impossible to set perfect matches
by adjusting three primaries localized to a point.

We show that the correct generalization is to set matches in the spatial-frequency domain. (See
Equation 11). Our result defines a simple procedure for matching the photopigment absorptions of
images on displays with different emissive primaries. We define this matching procedure, and then
we present examples of its use on different spatial patterns.

4.1 Displayed Image to Photopigment Absorptions

Conventional emissive displays have three primary lights, each with its own spectral power density.
The spectral power distributions (SPDs) of typical cathode-ray-tube (CRT) phosphors are shown in
the left panel of Figure 6. The small number of primaries permits us to introduce some simplifica-
tions into the computation. We further simplify our derivations by considering one-dimensional
images. Only the notation changes when we extend to two spatial dimensions.

At each spatial location, the SPD of a one-dimensional image is a linear combination of the
SPDs of the three primaries. We write this image as

fm(x; �) =
3X

j=1

sj(x)Mj(�);

where sj(x) is the spatial image of the jth primary, and Mj(�) is the SPD of the jth primary. The
linearity of the Fourier transform permits us to transform both sides of this equation with respect to
the spatial variable x. We write the Fourier transform SPD of the input image

Fm(�; �) =
3X

j=1

Sj(�)Mj(�): (7)

Here Fm and Sj are the Fourier transforms of fm and sj respectively. The function Fm is a repre-
sentation of the image in the Fourier domain.
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Figure 6: Left, the phosphor SPDs of a typical CRT; right, those of a display based on three laser
primaries selected to obtain a large color gamut.

We use Equation 6 to compute the spatial pattern of photoreceptor responses by multiplying
Ri(�; �) with the image, Fm, and then integrating with respect to wavelength:

Pi(�) =
Z
W
Fm(�; �)Ri(�; �)d�: (8)

The function Pi(�) is the Fourier transform of the spatial pattern of photoreceptor for the ith class
of cones and is based on the “continuous sheet” of photopigment described in Section 3.4.

It is convenient to express the integral in Equation 8 in a slightly different form by substituting
in the definition of Fm from Equation 7:

Pi(�) =
Z
W

2
4 3X
j=1

Sj(�)Mj(�)

3
5Ri(�; �)d�

=
3X

j=1

Sj(�)
Z
W
Mj(�)Ri(�; �)d�:

The integral depends only on the spatial variable, �. Define a new function,

Cij(�) =
Z
W
Mj(�)Ri(�; �)d�:

Using this notation, we can write the relationship between the spatial-frequency components of the
three primary images and the spatial-frequency components of the spatial pattern of photoreceptors
as

Pi(�) =
3X

j=1

Cij(�)Sj(�): (9)
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The summation in Equation 9 generalizes the matrix equation commonly used in color cali-
bration with uniform spatial fields. We can write Equation 9 as a matrix multiplication computed
separately for each spatial-frequency component:

0
B@ P1(�)
P2(�)
P3(�)

1
CA =

0
B@ C11(�) C12(�) C13(�)
C21(�) C22(�) C23(�)
C31(�) C32(�) C33(�)

1
CA
0
B@ S1(�)
S2(�)
S3(�)

1
CA : (10)

Equation 10 shows how to extend the relationship between display primary intensities and pho-
topigment absorptions from the special case of a uniform field. When we incorporate the OTF into
the calculation, we can relate the primary intensities to the photopigment absorptions by express-
ing the images in the spatial-frequency domain. We must use a different matrix at each spatial fre-
quency. The entries of the matrix are determined by the spectral power distributions of the display
primaries, the receptor absorption functions, and the optical transfer function of the eye.

We will express the spatial-frequency-dependent matrix multiplication using the matrix notation

P� = C�S�; (11)

where P� is a three-dimensional column vector with entries Pi(�), C� is a three-by-three matrix
with entries Cij(�), and S� is a three-dimensional column vector with entries Si(�). We will call
the collection of matricesC� the device calibration matrices.

Notice that the matrixC0 defines the mapping from the display primary intensities of a uniform
field (spatial frequency of zero) to the receptor responses. This three-by-three calibration matrix
is widely used in conventional colorimetry [5, 8, 23]. The device calibration matrices, which now
depend on spatial frequency, generalize conventional colorimetric mapping from uniform fields to
patterned images.

4.2 Image Matching Across Displays

Using Equation 11, we can develop a method of equating the photopigment absorptions from im-
ages on display with different primaries. Suppose we have two displays with calibration matrices
C� and C0

� . Consider an image, S� . We can calculate the expected pattern of photopigment ab-
sorptions for the image on the first display from the matrix multiplication, C�S� . To equate pho-
topigment absorptions from the two images requires that we find an image on the second display,
defined by S0� such that at each spatial frequency,

C
0

�S
0

� = C�S� : (12)

For each spatial frequency, �, we can solve for the image S0� using

S
0

� = (C0

�)
�1
C�S�:

In practice, we may be limited in how closely we can obtain the matches since the matricesC0

� may
not be invertible, and the solutions may not lie within the color gamut of the second display.
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4.3 Examples

We now calculate the significance of chromatic aberration for color matching in several examples.
Suppose that we wish to match images between a standard CRT, whose phosphors are shown in the
left panel of Figure 6, and a display based on a novel display technology, say using laser primaries
chosen to maximize the display’s color gamut, whose SPDs are shown in the right panel of the same
figure. We have chosen the maximum intensities of the display primaries so that uniform fields
of maximum intensity have equal effects on the photopigments; this is called equating the display
white points.

One way to see the effect of chromatic aberration is to calculate the spatial patterns of primary
intensities on the second display needed to match simple patterns, such as a step or an impulse, pre-
sented on the first display. In Figure 7(a), the left column of panels shows the primary intensities
of a step from white to black on the first display, the middle column shows the corresponding pho-
topigment absorptions for the three cone classes, and the right column shows the primary intensities
on the second display required to produce that pattern of photopigment absorptions. These absorp-
tions are based on the “continous sheet calculation” described in Section 3.4. Figure 7(b) is similar,
except that the spatial pattern of primary intensities on the first display is an impulse instead of a
step.

The images on the two displays match because they produce the same pattern of photopigment
absorptions. Chromatic aberration requires that we base our adjustment of the second display’s
primary intensities not only on the first display’s primary intensities at the corresponding location,
but on their spatial pattern as well.

For practical image matching, it is important to correct for chromatic aberration in the range up
to 8 or 10 cycles per degree. Above this spatial-frequency value, patterns appear to be light and
dark variations, no matter what their spectral composition [16]. Moreover, contrast resolution is so
poor that there is little point in correcting even for contrast differences in the high frequency range
[7].

5 Related work

We have relied on a number of sources in our analysis and calculations. We summarize these here,
and we draw the reader’s attention to some related work.

Our basic model is due to Hopkins (1955) [11], who derived the optical transfer function of
a defocused optical system with a circular aperture. Hopkins’ analysis is also the basis of recent
calculations by Flitcroft (1989) [6] and Williams et al. (1991) [25]. The article by van Meeteren
(1974) [15] provides an extensive and general discussion of optical aberrations and parameters of
the human eye. Legge (1987) [12] describes the relationship between optical defocus and the pa-
rameters necessary to implement the Hopkins calculation.

Thibos et al. (1992) [21] have recently developed a model of image formation in the human
eye. Their work refers to many other models and data of the eye’s image formation properties that

14



-0.5 0 0.5
0

0.5

1

-0.5 0 0.5
0

0.5

1

-0.5 0 0.5
0

0.5

1

-0.5 0 0.5
0

1

2

3

-0.5 0 0.5
0

1

2

3

-0.5 0 0.5
0

1

2

3

-0.5 0 0.5
-1

0

1

2

-0.5 0 0.5
-1

0

1

2

-0.5 0 0.5
-1

0

1

2

Display 1 Photopigment Display 2

position (degrees)

R R

G G

B B

L

M

S

(a)

-0.5 0 0.5
0

0.5

1

-0.5 0 0.5
0

0.5

1

-0.5 0 0.5
0

0.5

1

-0.5 0 0.5
0

0.5

1

1.5

-0.5 0 0.5
0

0.5

1

1.5

-0.5 0 0.5
0

0.5

1

1.5

-0.5 0 0.5

0

1

2

-0.5 0 0.5

0

1

2

-0.5 0 0.5

0

1

2

Display 1 Photopigment Display 2

position (degrees)

R R

G

B

L

M

S B

G

(b)

Figure 7: Matching color images of (a) a step or (b) an impulse on two displays. The left columns
of (a) and (b) show the primary intensities of the pattern on the first display; the center columns, the
resulting patterns of photopigment absorptions; and the right columns, the primary intensities on
the second display that produce the same patterns of photopigment absorptions, thereby matching
the first display.
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are beyond the scope of our analysis. These papers explore model eyes that include effects such
as spherical aberration (e.g., Thibos et al. (1990) [20]), and transverse chromatic aberration (e.g.,
Simonet and Campbell (1990) [17]), that are not shift-invariant. We have used their prediction of
axial chromatic aberration, which in turn follows LeGrand (1967) [13]. Their model is linear but
not shift-invariant. Additional precision in the image formation model may arise from considering
the general class of linear models. The theoretical simplicity of our results, however, depends upon
the use of a shift-invariant linear model of image formation. We have adopted the simpler version
so that we can obtain closed-form approximations. We suspect that over the central two degrees of
vision, where the role of color is most significant, the shift-invariant model will play a useful role.

Finally, the indispensible volume by Wyszecki and Stiles (1982) [26] contains many additional
references and human eye parameters.

6 Conclusions

To calculate the photopigment absorptions of a patterned stimulus, we must include the effects of
the image-formation components prior to the photopigments. Many of the components, such as
inert pigments, have the same effect on all corneal images. Chromatic aberration is somewhat more
complex, because its effects are pattern dependent.

We have explored the implications of chromatic aberration for color matching with patterned
stimuli. Our analysis is based on a shift-invariant linear model of the human eye that includes
diffraction, chromatic aberration, and wavelength-independent aberrations. Our model eye includes
many specific and somewhat arbitrary assumptions about practical viewing conditions. For exam-
ple, our calculations are based on a 3:0 mm pupil size and an accomodated wavelength of 580 nm.
Still, the central conclusions of our analysis will hold for any human eye for which a shift-invariant
linear system is a good model. Three conclusions stand out from our analysis.

First, above 20 cpd, only wavelengths near the accommodated wavelength can have detectable
contrast in the retinal image (see Figure 2). Even if the retinal contrast in this narrow band of wave-
lengths is detectable, the dynamic range of the visible contrast will be small. These two limita-
tions imply that high spatial-frequency components play little role in color and contrast perception.
Rather, these components can aid us only in localization.

Second, in the moderate spatial-frequency range, from 5-20 cpd, when the observer is acco-
modated to the yellow or green part of the spectrum, the visual system is dichromatic: there is
no contrast in the short-wavelength receptor class. Moreover, across this spatial-frequency range,
the spectral sensitivities of the long- and middle-wavelength receptors vary with spatial frequency
(see Figure 5). Hence, contrast and color comparisons are only meaningful within relatively small
spatial-frequency ranges.

Third, we have shown that the conventional method of setting point-by-point matches between
images fails to acount for the fact that image points on different displays may not have same line-
spread (or pointspread) function on the retina. Since the spatial patterns on the retina from individ-
ual points on the displays do not match, one cannot match the retinal images of two points simply
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by adjusting the intensities of the three display primaries. To the extent that human image formation
is linear and shift-invariant, sinusoidal patterns in a display image remain sinusoidal in the retinal
image. Since the spatial patterns from sinusoidal patterns do match, one can match the retinal im-
ages of two sinusoids simply by adjusting the intensities of the three display primaries. Hence, to
equate photopigment absorptions between images on different displays, one must adjust the primary
intensities in corresponding spatial-frequency bands.
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A The Hopkins OTF integrated in closed form

Hopkins (1955) [11] integrated the formula for the OTF in Equation 1 in closed form (his Equa-
tion 20) as follows:

H(s;�;w20) =
4

�a
[(cos

ajsj

2
)H1(a; �)� (sin

ajsj

2
)H2(a; �)]

where

� = cos�1
jsj

2
;

H1(a; �) = �J1(a) +
sin 2�

2
[J1(a)� J3(a)]�

sin 4�

4
[J3(a)� J5(a)] + : : : ;

and

H2(a; �) =

(sin�)[J0(a)� J2(a)] +
sin 3�

3
[J2(a)� J4(a)]�

sin 5�

5
[J4(a)� J6(a)] + : : : :

B Converting from reduced spatial frequency to cycles per de-
gree

In this section, we derive Equation 2, the relationship between cycles per degree, �, and Hopkins’
reduced spatial frequency, s,

s = c �
�

D0p
�:

We begin with Equation 17 in Hopkins (1955) [11], which relates reduced spatial frequency and
cycles per unit length in the image, R0, as follows:

s =
�

n0 sin�0
R0: (13)

Here n0 is the index of refraction in the image space and �0 is the half-angle of the cone subtended
by the exit pupil at the image point.

Let d be the exit pupil’s distance behind the image principal plane. Let p0 be the radius of the
exit pupil and f 0 be the image focal length. Then,

sin�0 =
p0

f 0 � d
:

For the full theoretical eye of LeGrand ([26]), f 0 = 22:2888 mm, d = 1:7743 mm, and n0 = 1:336.

If we now express sin�0 in terms of the radius of the entrance pupil, p, a very simple result
follows. Define the constant k to be the ratio of the size of the entrance and exit pupils, namely
k = p0=p. It follows that

sin�0 =
k

f 0 � d
p:
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For LeGrand’s full theoretical eye k = 0:9204. For this value and the previously cited values of f 0

and d,
k

f 0 � d
= 0:04487:

For the human optical system, this numerical value is identical to that of 1=f 0 to four significant
digits. Therefore we can use the approximation

sin�0 =
1

f 0
p: (14)

Two more relationships are needed to complete the derivation. The first is that between cycles
per unit length and cycles per degree,

R0 = c�:

where c is degrees per meter for the human eye (see Table 2(2.4.1) in Wyszecki and Stiles, 1982
[26]). The second is the definition of dioptric power,

D0 =
n0

f 0
:

Substituting for sin�0, R0, and n0=f 0 in Equation 13 yields Equation 2.

C Converting from w20 to defocus in diopters

In this section, we derive Equation 3, which defines the relationship between defocus measured in
diopters and the pathlength error, w20:

w20(�) =
p2

2
�

D0D(�)

D0 +D(�)
:

We begin with the definition of the focusing error w20 (Hopkins (1955) [11], Equation 13)

w20 =
n0z

2
� sin2 �0; (15)

where z is the axial distance from the out-of-focus image plane to the in-focus image plane. From
Appendix B we know that

sin�0 =
p

f 0
:

By substituting for sin�0 in Equation 15 we obtain

w20 =
n0z

2
�

 
p

f 0

!
2

: (16)
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Recall the definition of dioptric power,

D0 =
n0

f 0
;

so that

D0 +D =
n0

f 0 � z
; (17)

where D0 is the baseline dioptric power of the eye. From these two equations we find that

z =
n0D

D0(D0 +D)
;

and

f 0 =
n0

D0

:

Substituting these expressions for z and f 0 in Equation 16 yields Equation 3, as required.
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