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ABSTRACT

In DCT-based compressions such as JPEG, it is a common practice to use the same quan-
tization matrix for both encoding and decoding. However, this need not be the case, and
the flexibility of designing different matrices for encoding and decoding allows us to per-
form image restoration in the DCT domain. This is especially useful when we have severe
limitations on the computational power, for instance, in on-camera image manipulation for
programmable digital cameras. Here, we provide an algorithm that would compensate par-
tially for a defocus error in image acquisition, and experimental results show that the restored
image is closer to the in-focus image than is the defocused image.
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cus, noise in imaging systems.
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1. INTRODUCTION

The JPEG algorithm is a very popular lossy image compression standard for still-frame,
continuous-tone images [1]. In this algorithm, the image is first divided into 8 x 8 non-
overlapping blocks, and each block is subjected to a discrete cosine transform (DCT). The
coefficients are then quantized according to the quantization matrix (.. This is done by
rounding off the quotients when the DCT coefficients are divided entrywise by ). They are
then entropy-coded before transmission. Upon receiving, the decoder reverses the process
for the entropy coding, dequantizes the coefficients by multiplying entrywise with the matrix
R4, and performs the inverse DCT. The compression is lossy because of the quantization
process.

It is customary and convenient to use the same quantization matrix for both encoding
and decoding, i.e. Q. = Q4. The JPEG committee actually recommends the matrix as
shown in figure 1 for both @), and @4, which takes into account some of the human visual
system properties, although the use of it is strictly voluntary. In the literature, one could
find various attempts to vary the dequantization matrix Q4 slightly to achieve better images



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 36
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Figure 1: The recommended JPEG Quantization Matrix

(see, for example, [2], [3], and [4]). In this paper, we will first show that using Q. = Qg is
not necessarily optimal in the sense of reducing noise, and in fact, in some circumstances the
flexibility of using a Q. different from ()4 allows us to restore images in the DCT domain. In
particular, we provide an algorithm for image restoration when it has been taken out-of-focus.
We assume here that the amount of focusing error is known a priori, or estimated beforehand
by some external means. We will show that after compression and decompression, the image
is closer (in the mean-square sense) to the original in-focus image than is the uncompressed
defocused image.

Before we proceed, however, it is imperative for us to explain why and when this algorithm
would be useful. The motivation behind the scheme is that as the sensors in digital cameras
move from being CCD-based to CMOS-based, it is possible to allow certain computational
power on the camera to devote to image restoration. For example, instead of mechanically
moving the lens to adjust focusing, we can use the computational capacity to manipulate the
image concurrently, thereby reducing the need for an exact positioning of the lens. However,
the cost of on-camera computation is much more expensive than if done offline, and a full-
frame fast Fourier transform of the image is not desirable because its complexity goes up too
rapidly with the size of the image. Yet, as most cameras have built-in JPEG compression and
decompression algorithms in place, it would be very cost-effective if we can take advantage
of the blockwise DCT that is readily available to us as part of the JPEG standard. Our
goal, therefore, is to make use of the blockwise DCT frequency components in the design of
Q. and )y to approximate the desirable image restoration had we been able to perform the
full-frame FFT.

2. NOISE TRADEOFF

Consider one 8 x 8 block of the image. Let its DCT domain representation be X (u,v),
where u and v are the spatial frequencies in the horizontal and vertical directions, both
ranging from 0 to 7. Using X, (u, v) to denote the quantized coefficients and X, (u, v) for the
quantization noise, we see that they are related by:

X (u,v)

0ol v) = X, (u,v) + X, (u,v). (1)



Since we only transmit X, (u, v), for decoding, we have:

X(u’ U) = Qd(ua U)XQ(U“’ U)’ (2)

where we have used X to denote the estimate of X. Now to compare the original and the de-
compressed image, we normally would have to calculate the mean-square error (MSE) in the
space domain. However, because of the unitary nature of the 2-D DCT II, we could employ
the Parseval’s theorem and perform the calculation in the DCT domain [4]. Therefore,

MSE = ZZ( X (u, v))2

uOvO

= ZZ QdX+Qe ) (3)

u=0v=0

where it is understood that Q., Q4, X,, and X,, all have arguments (u,v). We can see that
when X, is small and X, large, it is reasonable to set (). = Q4 to generate small MSE.
However, typically for high frequencies we have larger X,, and smaller X,, and changing Q).
at those frequencies would provide a tradeoff between the sources of noise and may reduce
the overall MSE. With this in mind, we now look at a specific case where the original image
is in fact corrupted by an out-of-focus optical transfer function (OTF), and we modify the
quantization matrix (), to perform partial restoration.

3. DEFOCUSING

In imaging of a diffraction-limited system with incoherent light, the object and the image
are related by [5]:

gz(fz;fy) :H(fzafy)gg(fmafy) (4)

where G, is the normalized frequency spectrum of the image intensity I;, G, is the normalized
frequency spectrum of the object intensity I, and H is called the optical transfer function
(OTF). If the ideal focusing plane is at z; from the lens, but we focus on z,, and radius in
the pupil is r, we define, as in [5]:

1 /1 1
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which is an indication of the severity of the focusing error when normalized by wavelength
A. The path length error is therefore

(6)
and

I Lasa,z,) €xp GEW (2 + 20,y + y0) — W(z — 20,y — 40)]) dady

(faia fy) ffA(O,()) d:cdy

(7)
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Figure 2: Cross-section view of the OTF
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(8)
Figure 2 shows a cross-section of the OTF for a circular pupil with various amounts of

defocus. We see that even for in-focus imagery, we have a cutoff because of the finite size
of the pupil, and we also see attenuation at frequencies before cutoff. For restoration of

reproduce the object itself.

a defocused image, our goal is to modify it to resemble the in-focus image rather than to

4. DCT-DOMAIN RESTORATION

Since the OTF multiplies the Fourier transform of the images, we expect that the middle
to high frequencies (where the OTF of W,,/\ = 0 and W,,/\ > 0 differ most) are more
severely suppressed and ideally we would like to boost those frequencies. However, in the
DCT domain the blockwise frequencies do not bear a simple relationship with the frequency
components in the Fourier domain. Indeed, blocking destroys the space-invariance of the
system, and so we cannot relate the object and the image by a transfer function as in (4).
Therefore, it is not possible to specify analytically the amount of pre-emphasis required for
each of the DCT frequency components from the OTF expressed in the Fourier domain.
Instead, we collect a set Cj, of in-focus images and another set C,,; of the corresponding out-
of-focus images. Let Xj,(u, v) be the vector containing the (u,v) DCT coefficients in all the
blocks of the in-focus images, and X,y (¢, v) be the corresponding vector for the out-of-focus

images, and we seek a multiplicative factor such that

Kout (4, v)a(u,v) = Xin(u,v).

(9)
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Figure 3: Laplacian convolution kernel

The best a(u, v), in the mean-square sense, is given by:

<Xin(u, U), Xout (’LL, U))

<X0ut (U, U), Xout(u, U)) (10)

a(u,v) =

with (-,-) denoting inner product. This method is related to the variance-matching method
in [6] designed for text sharpening in scanned images, but is superior in terms of mean-
square error reduction. In the appendix we provide an examination of when the variance-
matching method converges to the minimum mean-square error (MMSE) method used here.
Unfortunately we have no guarantee that a > 0, and indeed it may not be if its calculation
is dominated by noise. Therefore, we clip a to be > 0.001. Note that we do not have to
multiply the DCT coefficients by a(u,v) before quantization, but could simply change the
encoding quantization matrix to:

Qe(u,v) = (11)

where ) could be the quantization matrix in figure 1.

5. REGULARIZATION

Because of the ill-posed nature of the image restoration problem, an MMSE solution is
known to be highly sensitive to noise, especially at high frequencies [7]. It is very important
to incorporate some regularization constraint to compromise between fidelity of the data and
consistency with a priori knowledge of the image. Here we propose a method of regularization
similar to [4] that can be incorporated in the dequantization matrix Q.

Assume we have B blocks altogether. Let [(j, k) be a highpass filter, such as that of
a Laplacian kernel as shown in figure 3 [8]. Let L be the 2-dimensional Discrete Fourier
Transform (DFT) of | with size 8 x 8, and so

Gi =Y (Xi(u,v)L(u, v))? (12)

u=0v=0

would measure the amount of high-frequency content in the block ¢. Therefore, we want

DD (Xout(ua v)L(u, U)) <G= B Z Gi. (13)



This serves as our regularization constraint. At the same time, we also want to constrain
the MSE of the reconstructed image compared to the in-focus image. Therefore we have:

2
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( out —Xq,out> < R (14)
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u=0v=0

The expression on the left is our objective function, and our goal is to minimize it subject
to the constraints mentioned above. Having set up the optimization problem, we could now
solve it via Lagrangian multiplier. Therefore we have:

Z Z ( OUtu v)) - q,out) +v Z Z ( out ( (u,v))2 (15)

u=0v=0 u=0v=0

where we have used v to represent the Lagrangian to avoid confusion with the wavelength
A. As discussed in [9] and [10], v is given by (R/G). Now, setting

0Jw) _ (16)
a)(out
we obtain, after some simplification,
O Q(ua U)G
b'¢ X, ot 1
out (V) = G G, ) L2 (w, 0) R0 (a7)
Compared with equation (2), it is clear that we should set @, as:
u,v)G
Qa(u,v) = Q(u,v) (18)

G + Q*(u,v)L2(u,v)R’

Note that, as G — oo, i.e. as we relax the regularization constraint, we obtain @y = Q.
Finally, we need to round off (); to contain integers in the range of 0 to 255, since the
entries of the quantization matrix are represented as 8-bit unsigned integers in the JPEG
algorithm [1].

6. SIMULATION RESULTS

We implement the algorithm on a 256 x 256 “bridge” image, and the resulting images are
shown in figure 4. To obtain a quantitative comparison among the images, we use the
signal-to-noise (SNR) ratio as the metric. SNR is defined as [11]:

> Sk (25, k))? )
Zj Zk (iL'(], k) - ‘%(]a k))Q

SNR(z, ) = 101logy, ( (19)



where (7, k) range over the whole image. Now for the figures, (a) is the ideal in-focus image
that we would like to obtain with an aberration-free lens. (b) is the image we get with
a defocus parameter W,,,/\ = 0.4. We also add some Gaussian noise to the defocused
image, with SNR = 30dB. We compress and decompress (b) with the standard quantization
matrix as recommended by the JPEG standard (see figure 1) to arrive at (c). Based on this
quantization table, we make the changes according to our algorithm outlined above for @,
and @4 and we obtain the image in (d). We also did a set of experiments when no noise is
present, and the SNR of these two sets of experiments are shown in table 1. We note that
our method generally gives a higher SNR than even the uncompressed defocused image.

Signal-to-noise ratio
Conditions Without noise | With noise
Before compression 25.1dB 24.3dB
Standard ), = Qq 23.4dB 23.2dB
Customize Q. and Qg 25.9dB 25.1dB

Table 1: SNR of Various Images

7. CONCLUSIONS

In this paper we have presented an algorithm that would take advantage of the flexibility
in designing the quantization matrices in JPEG to perform partial restoration of the im-
ages. Experimental results show that the restored images, although quantized, could have a
smaller distortion in terms of mean-square error compared to the unquantized images before
processing.

8. APPENDIX

In the variance-matching method [6], the multiplicative factor a'(u, v) is chosen such that:

: | Var(X) | s X XE - (X Xw)?
¢ (u’ v) B \l Var(Xout) B J %EXgut - (% ZXout)2 (20)

and we want to compare it against our calculation of a in (10). By the Cauchy-Schwarz
inequality, we know that:

(X XuXow) <X XD X2, (21)

with equality if and only if X, equals Xj, or a scaled version of it. Now taking square root
on both sides and rearranging terms in (21), we obtain:

XinXou < X2
Z Xout n Z Xout




Figure 4: (a) In-focus image (b) Defocused image (c¢) Image compressed and decompressed
with normal @ (d) Image compressed and decompressed with improved Q. and Qg



Except for the DC frequency, X;, and X, are reasonably approximated to possess zero-mean
Laplacian distributions [12], so we have % 3 Xin ~ 0 and % > Xous & 0, and (22) now implies
a < a'. Since Xy is generally not simply a scaled version of Xi,, the variance-matching
algorithm tends to over-compensate the defocus by selecting a' > a.
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