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Abstract

Recently, we proposed an efficient image segmentation tech-
nique that anisotropically smoothes the homogeneous pos-
terior probabilities before independent pixelwise MAP clas-
sification is carried out [11]. In this paper, we develop the
mathematical theory underlying the technigue. We demon-
strate that prior anisotropic smoothing of the posterior prob-
abilities yields the MAP solution of a discrete MRF with
a non-interacting, analog discontinuity field. In contrast,
isotropic smoothing of the posterior probabilities is equiv-
alent to computing the MAP solution of a single, discrete
MRF using continuous relaxation labeling. Combining a
discontinuity field with a discrete MRT is important as it
allows the disabling of clique potentials across discontinu-
ities. Furthermore, explicit representation of the discontinu-
ity field suggests new algorithms that incorporate properties
like hysteresis and non-maximal suppression.

1. Introduction

In [11], we proposed a new segmentation technique that was
applied to segmenting MRI volumes of human cortex. The
technique comprise three steps. First, the posterior proba-
bility of each pixel is computed from its likelihood and a
homogeneous prior; i.e., a prior that reflects the relative fre-
quency of each class but is the same across all pixels. Next,
the posterior probabilities for each class are anisotropically
smoothed (using a 3D-extension of the algorithm suggested
by Perona and Malik {9]). Finally, each pixel is classi-
fied independently using the MAP rule. Fig. 1 compares
the classification of cortical white matter with and without
the anisotropic smoothing step. The anisotropic smooth-
ing produces classifications that are qualitatively smoother
within regions while preserving detail along region bound-
aries. The intuition behind the method is straightforward.
Anisotropic smoothing of the posterior probabilities results
in piecewise constant posterior probabilities which, in turn,
yield piecewise “constant” MAP classifications.
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Figure 1: (Top row) Left: Intensity image of MRI data. Mid-
dle: Image of posterior probabilities corresponding to white matter
class. Right: Image of corresponding MAP classification. Brighter
regions in the posterior image correspondto areas with higher prob-
ability. White regions in the classification image correspond to
areas classified as white matter; black regions correspond to areas
classified as CSF. (Bottom row) Left: Image of white matter pos-
terior probabilities after being anisotropically smoothed. Right:
Image of MAP classification computed using smoothed posteriors.

In this paper, we explore the mathematical theory under-
lying the technique. We demonstrate that prior anisotropic
smoothing of the posterior probabilities yields the MAP so-
lution of a discrete MRF with a non-interacting, analog dis-
continuity field. In contrast, isotropic smoothing of the pos-
terior probabilities is equivalent to computing the MAP so-
lution of a single, discrete MRF using continuous relaxation
labeling. Combining a discontinuity field with a discrete
MREF is important as it allows the disabling of clique poten-
tials across discontinuities. Furthermore, explicit represen-
tation of the discontinuity field suggests new algorithms that
incorporate hysteresis and non-maximal suppression.

2. Isotropic Smoothing

In this section, we describe the relationship between max-
imum aposterior probability (MAP) estimation of discrete
Markov random fields (MRF) and continuous relaxation la-
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Figure 2: Equivalence between isotropic smoothing of posterior
probabilities, Markov random fields with 2nd order cliques, and
continuous relaxation labeling.

beling (CRL) [10]. This connection was originally made
by Li et. al [8]. We review this relationship to intro-
duce the notation that will be used in the rest of the paper
and to point out the similarities between this technique and
isotropic smoothing of posterior probabilities. These rela-
tionships are depicted in Fig. 2.

We specialize our notation to MRF’s defined on image
grids. Let S = {1,...,n} be aset of sites where each s € §
corresponds to a single pixel in the image. For simplicity,
we assume that each site can take on labels from a common
set L = {1,...,k}. Adjacency relationships between sites
are encoded by N' = {N;|i € 8} where N, is the set of
sites neighboring site ¢. Cliques are then defined as subsets
of sites so that any pair of sites in a clique are neighbors. In
this paper, we will only consider 4-neighbor adjacency for
images (and 8-neighbor adjacency for volumes) and cliques
of sizes no greater than two. By considering each site as a
discrete random variable f; with a probability mass function
over L, a discrete MRF f can be defined over the sites with
a Gibbs probability distribution.

If datad; € dis observed at each site , and is dependent
only on its label f;, then the posterior probability is itself a
Gibbs distribution and by the Hammersley-Clifford theorem,
also a MREF, albeit a different one [5}: P(f|d) = Z7' x
exp{—FE(f|d)} where

E(fld)= ) Vi(fild)+ > Valfi, fi) (1)

t€Cy (4,5)€C2

and V(f;|d;) is a combination of the single site clique po-
tential and the independent likelihood. The notation (3, j)
refers to a pair of sites; thus, the sum is actually a dou-
ble sum. Maximizing the posterior probability P(f]d) is
equivalent to minimizing the energy E(f|d).

Continuous Relaxation Labeling. The continuous relax-
ation labeling approach to solving this problem was intro-
duced by Li et. al. [8]. In CRL, the class (label) of each
site ¢ is represented by a vector p; = [p;(f;)|fi € L] sub-
Ject to the constraints: (1) p;(f;) > 0 forall f; € £, and
(2) 3 t,ec pi(fi) = 1. Within this framework, the energy
E(f |d§ to be minimized is rewritten as

E(p|d)

= DD Vilfildmi(f) + @

ieCy fiel
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Note that when p;( f;) is restricted to {0, 1}, E(p|d) reverts
to its original counterpart E(f|d). Hence, CRL embeds
the actual combinatorial problem into a larger, continuous,
constrained minimization problem.

The constrained minimization problem is typically solved
by iterating two steps: (1) gradient computation, and (2) nor-
malization and update. The first step decides the direc-
tion that decreases the objective function while the sec-
ond updates the current estimate while ensuring compli-
ance with the constraints. A review of the normaliza-
tion techniques that have been proposed are summarized
in [8]. Ignoring the need for normalization, continuous re-
laxation labeling is similar to traditional gradient descent:

L) = pH() — RIS where
9E(p|d) Vilfild)+2 > D" Valfi, ) ()
B0t (f5) e o

ji(i,j)ecr fiecl

(3)
and the superscripts £,? + 1 denote iteration numbers. The
notation j : (3, 7) refers to a single sum over j such that
(¢,) are pairs of sites belonging to a clique. Barring
the different normalization techniques could be employed,
Eqn. 3 is found in the update equations of various CRL algo-
rithms [10, 4, 7]. There are, however, two differences. First,
in most CRL problems, the first term of Eqn. 3 is absent and
thus proper initialization of p is important. We will also omit
this term in the rest of the paper to emphasize the similarity
with continuous relaxation labeling. Second, CRL problems
typically involve maximization; thus, V2(f;, f;) would rep-
resent consistency as opposed to potential, and the update
equation would add instead of subtract the gradient.

Isotropic Smoothing. A convenient way of visualizing
the above operation is as isotropic smoothing. Since the
sites represent pixels in an image, for each class f;, p;:(f;)
can be represented by an image (of posterior probabilities)
such that k classes imply & such image planes. Together,
these k£ planes form a volume of posterior probabilities.
Each step of Eqn. 3 then essentially replaces the current
estimate pf(f;) with a weighted average of the neighboring
assignment probabilities p} (f7). Inother words, the volume
of posterior probabilities is linearly filtered. If the potential
functions V,(f;, f;) favor similar labels, then the weighted
average is essentially low-pass among sites with common
labels and hi-pass among sites with differing labels.

3. Anisotropic Smoothing

Isotropic smoothing causes significant blurring especially
across region boundaries. A solution to this problem is to
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Figure 3: Eguivalence between anisotropic smoothing of poste-
rior probabilities, Markov random fields with discontinuity fields,
and robust continuous relaxation labeling.

smooth adaptively such that smoothing is suspended across
region boundaries and takes place only within region in-
teriors. Anisotropic smoothing is often implemented by
simulating nonlinear partial differential equations with the
image as the initial condition [1, 9]. In this section, we
show that while isotropic smoothing of posterior probabili-
ties is the same as continuous relaxation labeling of a MRF,
anisotropic smoothing of posterior probabilities is equiv-
alent to continuous relaxation labeling of a MRF supple-
mented with a (hidden) analog discontinuity field. We also
demonstrate that this method could also be understood as
incorporating a robust consensus-taking scheme within the
framework of continuous relaxation labeling. These rela-
tionships are depicted in Fig. 3.

We extend the original MRF problem to include a non-
interacting, analog discontinuity field on a displaced lattice.
Thus, the new energy to be minimized is:

Ef )= ) [5%,—2‘/2(13' Jfi) i+ (liy — 1—logli ;)
(1,§)€C2
(4)
where V| (f;) has been dropped for simplicity since the dis-
continuity field does not interact with it. The individual sites
in the discontinuity field 1 are denoted by /; ; which repre-
sent either the horizontal or vertical separation between sites
tand j in §. When /; ; is small, indicating the presence of
a discontinuity, the effect of the potential V5(f;, f;) is sus-
pended; meanwhile, the energy is penalized by the second
term in Eqn. 4. There are a variety of penalty functions that
could be derived from the robust estimation framework (see
Black [2]). The penalty function in Eqn. 4 was derived from
the Lorentzian robust estimator.

The minimization of E(f,1) is now over both f and
1. Since the discontinuity field is non-interacting, 1 can be
minimized analytically by computing the partial derivatives
of E(f,1) withrespect to /; ; and setting that to zero. Doing
so and inserting the result back into E(f,1) gives us

E(f)= 3 log [1+#Vz(ﬁ,f;) (5)

(1,5)€C2

Rewriting this equation in a form suitable for CRL, we get
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(6)
Note that when p;(f;) is restricted to {0, 1}, Eqn. 6 reduces
to Eqn. S.

Anisotropic Smoothing. To compute the update equation
for CRL, we take the derivative of E(p) with respect to

pi(fi):

OE(p) N RS RPN I
A (Z)w ;,Ei S )| (D)
where

Wi = 20’2/ 202 + Z VZ(fi; f])pz(fz)p](fj)
(fi,fi)ec? ®)
8

The term w; ; encodes the presence of a discontinuity. If
w; ; is constant, then the above equation reverts to the
isotropic case. Otherwise, w; ; either enables or disables
the penalty function V2(f;, f;). This equation is similar to
the anisotropic diffusion equation proposed by Perona and
Malik [9].

Robust Continuous Relaxation Labeling. Each itera-
tion of continuous relaxation labeling can be viewed as a
consensus-taking process [12]. Neighboring pixels vote
on the classification of a central pixel based on their cur-
rent assignment probabilities p; ( f; ), and their votes are tal-
lied using a weighted sum. The weights used are the same
throughout the image; thus, pixels on one side of a region
boundary may erroneously vote for pixels on the other side.
Anisotropic smoothing of the posterior probabilities can be
regarded as implementing a robust voting scheme since votes
are tempered by w; ; which estimates the presence of a dis-
continuity. The connection between anisotropic diffusion
on continuous-valued images and robust estimation was re-
cently demonstrated by Black ez. al. [3].

4. Results and Discussion

The anisotropic smoothing scheme was used to segment
white matter from MRI data of human cortex. Pixels a given
distance from the boundaries of the white matter classifica-
tion were then automatically classified as gray matter. Thus,
gray matter segmentation relied heavily on the white mat-
ter segmentation being accurate. Fig. 4 shows comparisons
between gray matter segmentations produced automatically
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Figure 4: Left images show manual gray matter segmentation
results; right images show the automatically computed gray matter
segmentation.

by the proposed method and those obtained manually. More
examples can be found in [11].

The technique being proposed bears some superficial re-
semblance to schemes that anisotropically smooth the raw
image before classification [6]. Besides the connection be-
tween our technique and MAP estimation of Markov random
fields, which is absent in schemes that smooth the image
directly, there are two other important differences. First,
anisotropic smoothing of the raw image does not take into
consideration the discrete number of classes that are actually
present. Second, anisotropic smoothing of the raw image
is only applicable when the noise corrupting the image is
additive and class independent. For example, if the class
means were identical and the classes differed only in their
variances, then anisotropic smoothing of the raw image is
ineffective. On the other hand, applying anisotropic smooth-
ing on the posterior probabilities is still feasible even when
the class likelihoods are described by general probability
mass functions.
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The equivalence between anisotropic smoothing of pos-
terior probabilities and MRF’s with discontinuity fields also
offers a solution to the problems of edge handling and miss-
ing data. These twoissues can be treated in the same manner
as in traditional regularization. Solving of the latter implies
that MAP classification can be obtained even at locations
where the pixel values are not provided.
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