
JOURNAL OF MATHEMATICAL PSYCHOLOGY 11, 391-403 (1974) 

Equivalence Classes of Functions of Finite Markov Chains1 

BRIAN A. WANDELL~ 

School of Social Sciences, University of California, Irvine, California 92664 

AND 

JAMES G. GREENO AND DENNIS E. &AN 

University of Michigan, Human Performance Center, Ann Arbor, Michigan 

A matrical representation of a Markov chain consists of the initial vector and transi- 
tion matrix of the chain, along with matrices that specify which observable response 
occurs for each state. The likelihood function based on a Markov model can be stated 

in a general way using the components of the model’s matrical representation. It 

follows directly from that statement that two models are equivalent in likelihood if 
they are related through matrix operations that constitute a change of basis of the 

matrical representation. Two necessary properties of a change matrix associating two 
Markov models that are members of the same equivalence class with respect to likeli- 

hood are derived. Examples are provided, involving use of the results in analyzing 
identifiability of Markov models, including a useful application of diagonalization that 

provides a connection between the problem of identifiability and the eigenvalue 

problem. 

The main development of this paper will be to characterize classes of Markov 
theories that possess identical likelihood functions. Earlier analyses (Green0 & Steiner, 
1964; Greeno, 1967, 1968; Steiner & Greeno, 1969) have attempted to characterize 
these classes of theories by specifying a set of identifiable parameters of a theory that 
are given as functions of the theoretical parameters. Then equivalent versions of the 
model are cases where the theoretical parameters lead to the same values of the 
identifiable parameters. This approach has not led to very general characterizations. 
The approach taken here is to consider a model as a set of matrices and vectors-a 
vector of initial probabilities, a transition matrix, a set of matrices that relate the states 
of the model to observable responses, and a summation vector. The characterization of 
models that are equivalent in likelihood is a relationship among the matrices defining 
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the two models (see (2)). M an readers will immediately recognize this relationship y 
as simply reexpressing the matrical representation of the model with respect to a new 
basis. 

One implication of this fact is that we now have a means of generating alternative 
representations of a Markov theory that may contain fewer parameters than the original. 
The existence of such a representation implies that the parameters in the original 
model are not independently estimable. A new, reduced, parameter space is provided 
by the constructed formulation. A model that is stated in a form without independently 
estimable parameters is said to lack identifiability. In general, this occurs when 
probabilities of data are determined by a smaller set of parameters than that specified 
in the theory. While estimates of the smaller parameter set can be found, no amount of 
data can provide estimates of all the theoretical parameters, unless new kinds of 
experiments are devised that provide new kinds of data. (For a fuller discussion of the 
general issue of identifiability see Restle & Greeno, 1970, Chapter 10. The problem is 
a standard topic in econometrics, and a basic series of papers is in Koopmans, 1950.) 

THEORY 

The notation to be used is patterned after Erickson (1970). The proposition to be 
proved is demonstrated almost trivially once it is properly formulated. 

Let X = {xt , I} be a standard Markov chain with stationary transition probabilities 
and state space I, assumed to be finite and minimal (cf. Chung, 1960). Let v denote 
the start vector; elements of v are p(xl = i) for i E I. Let A be the matrix of transition 
probabilities, p(x,+r = j / xt = i), for i and j in I. 

Let D be the set of observable outcomes, usually a set of responses. Letf denote a 
function that takes I onto D. Note that this function associates with each state a unique 
response from D and thus naturally defines the process that concerns us, yt = f(xJ. 
The ordered pair Y = (f, X) is called a function of the finite Markov chain. 

The outcome of an experiment is a sequence of observable responses d,d, ... d,, , for 
a finite experiment with n trials. Define a matrix C(d,) whose (i, j)th entry is one if 
i = j and j Ef-l(dk), and zero otherwise. That is C(d,) has a one in each diagonal 
entry corresponding to a state that is associated with the response dk and zero every- 
where else. Also define a column vector Z whose entries are all ones. If the Markov 
chain X has N states, then C(d,) is N x N and .Z is an N-vector. Now denote a 
sequence of observed responses d = dl ... d, . The likelihood function of Y, is given 

by 
L(d; Y) = vC(d,) AC(d,) A ..- AC(d& 

To see that (1) is correct, consider the first trial, with response dl . Clearly, 

L(d,; Y) = vC(d,)Z, 

(1) 
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the sum of probabilities of the states in I that give response d1 . Now consider a two- 
trial experiment with outcomes d&a . The likelihood is 

L(d,d,; Y) = vC(d,) AC(d,)Z. 

The term vC(d,) is a vector with nonzero probabilities for the states associated with di 
and the rest zero. vC(d,)A is the probability vector for the states in I on trial 2, when it 
is certain that d1 occurred on trial 1. vC(d,) AC(&) modifies vC(d,)A by placing zeros 
for all the states that do not give response d, . Then the likelihood is the sum of these 
probabilities. In general, if v,-~ is the vector of probabilities of the states in 1 for trial 
n - 1, when it is certain the first n - 1 outcomes were dl ... dnpl, then V, = vnelAC(d,J, 
and this sketches an inductive proof of equation (1). 

An easy extension of this reasoning gives the likelihood function for an infinite 
sequence in D that contains a finite number of all but one element d, . Let 
d = d, e** d,d, .... The likelihood is 

L(d; Y) = ,li+i &&)A --- AC(d,-,)(AC(d,,))’ 2’:. 

A sequence of this kind would arise with positive probability only iff-l(d,J were an 
absorbing class. In the usual case, f-l(d,J contains an absorbing state and then the 
limit of (AC(d,))“, as m grows, is a matrix with one at the diagonal entry for the 
absorbing state, and zeros elsewhere. 

In general, given a function of a Markov chain, Y, a matrical representation of Y is 
a 4-tuple, 

M, = (v, {C(dJ: di E D}, A, Z) 

and the entries of M, are sufficient to determine the likelihood function, (1). We now 
consider the class of all 4-tuples of the form (w, {G(di): di E D}, B, S) where w is an 
N-element row vector, G(di) and B are N x N matrices, and S is an N-element 
column vector, and where substitution into (1) gives an acceptable likelihood function 
(that is, a number between zero and one for all permissible substitutions of response 
sequences in the sequence d,d, ... d, ..., and the sum over all such sequences is one). 
Within the class of all such 4-tuples, there are many that give the same likelihood 
function as M, while not conforming to the matrix restrictions discussed previously. 
To obtain a new matrical representation M,, that gives the same likelihood function as 
M, , find a nonsingular N x N matrix, P, and compute the conjugate operators and 
new vectors 

v”I = VP, C’(d,) = P-T(di)P, 

A’ = P-IAP. 2’ = P-1.z. 
(2) 
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Then the matrical representation My, = (zY’, {C’(d,): di E D>, A’, Z’) generates the 
same likelihood function as My , for it is obvious that 

L(dldz ... d,; Y) = vC(d,) AC($) A ... AC(d& 

= v’C’(d,) A’C’($) A’ ... A’C’(&)Z’. 

To summarize this result we state the following. 

PROPOSITION 1. Let M and M’ be matrical representations of a function of a jnite 
Markov chain. If there exists a nonsingular change matrix, P, such that (2) holds, then the 
likelihoodfunctions of M and M’ are identical. 

In other words, M and M’ are equivalent in likelihood if they are related through (2) 
by a nonsingular P. Equation (2) states that the square matrices are similar. The 
similarity relation is obviously an equivalence and any two similar matrices represent 
the same underlying linear transformation simply written with respect to a different 
coordinate system or basis. Postmultiplying v and premultiplying Z by P and P-1 
respectively has the effect of rewriting these vectors with respect to that same basis. 

Although Proposition 1 permits us to generate a very large number of matrical 
representations with identical likelihood functions, we have a special interest in 
matrical representations that are possible theories with psychological content. We 
attempt to specify this class of matrices by the following. 

DEFINITION. Let M = (w, {G(d,): di ED>, B, S) b e a matrical representation of a 
function of a finite Markov chain. Then M is a Markov theory (MT) if and only if 

(1) All entries of w and B are nonnegative. 

(2) The row sum of w and all the row sums of B equal one. 

(3) The (i,j)th entry of G(d,) is one when i = j E f -l(dJ and zero otherwise. 

(4) The column vector S has all its entries equal to one. 

It is important to ask whether it is possible for two matrical representations with 
identical likelihood functions to both be MT’S Using Proposition 1 we can often 
generate new MT’s from old ones. A number of examples will be given below. 

We add here a remark about necessity. A converse proposition of Proposition 1 is 
that for any two matrical representations M and M’ with the same state space, if M and 
M’ are identical in likelihood, then M’ can be obtained from M through (2) with some 
nonsingular change matrix P. This proposition is true under fairly general conditions, 
having been proved by Erickson (1970). W e d o not present Erickson’s proof, since it 
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requires considerable development of notation. Briefly, Erickson showed that if two 
matrical representations M and M’ are of the same size and are both related to a set of 
observable responses through the same state-response matrices, and if the size of M and 
M’ equals the rank3 of the matrical representation of M, then there is a similarity 
transformation yielding M’ from M. When the condition of rank(M) = size(M) holds, 
Erickson’s work appears to show the converse of Proposition 1. 

The next proposition states some necessary conditions that a change matrix must 
satisfy if it is to generate a new MT from a given MT. Let the set of observable 
outcomes be given as {dr ,..., di ,..., d,}, let rank C(dJ = yi, and let qi = Cili yh. 

We assume without loss of generality that yi < yj (Vi < j), and further we let the 
response function matrix for the ith observable outcome be 

4i 

C(4) = qi + yi 

N - qi+l 

0 

01 
-__---- 

0 / 
I 
I -------I 
I 
I 

0 I 
I 

1 

-- 

0 

_--- 

1 
---- 

0 

0 

------- 

0 

------- 

0 

0 

This can always be achieved by simply relabeling the states. 

PROPOSITION 2. Let M and M’ be Markov theories satisfying (2), both written in 
standard form. Then the nonsingular change matrix P must be in block diagonal form 
where the ith block has dimension yi x ri . In addition, the sum of entries of each YOW of P 
must be one. 

Proof. Let pj, be the (j, k)th entry of P. Since PZ = .Z, the jth entry of PZ, which 
equals &rpj, , must be one, and thus the row sum of P is one. 

The rank of C(dJ equals the rank of C’(dJ because they are similar; therefore, we 
may conclude that C(dJ = C’(dJ. Equation (2) implies that PC(dJ = C(dJP. 

a The definition of the rank of a function of a finite Markov chain is given in Erickson’s paper, 
while the definition of size of Y = (f, x) is simply the order of the image off. 

480/r r/4-5 
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Note that 
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/ Pl*,i+l *-. Pi,P.i+ri 

Let Ri = {j: pi < j < qi + ri}. Clearly, if j E R, and k 6 Ri , then pj, = 0 and 
p,$ = 0. But since this holds for all i, the only nonzeropj, have both j and k as members 
of Ri for some i. This proves that the change matrix is in block diagonal form. 

Now we consider the question of reducing the size of the state space. The preceding 
discussion has dealt with relations between matrical representations that have the 
same number of states. But it sometimes happens that the likelihood functions generated 
by two theories are identical when the state spaces are not of the same size. An example 
is the theory of simple memorizing having a state for short-term retention, which for 
conditions often used in experiments cannot be distinguished from simple all-or-none 
learning where only a single state represents all correct responses that occur before 
learning (see Greeno, 1967; Steiner & Greeno, 1969). 

We simply remark here that the notion of collapsibility of a function of a Markov 
chain, introduced by Burke and Rosenblatt (1958) and discussed further by Kemeny 
and Snell (1960), can now be viewed in slightly greater generality. A Markov chain 
X = (st , I) is collapsible through the functiong: I + Jif the function of X, Y = (g, x) 
is a Markov chain. Burke and Rosenblatt showed that a sufficient condition for 
collapsibility is that for any j, k E J, P(y,+, = k j xt = h,) = P(Y~+~ = k 1 xt = h,) for 
h, , h, Eg-l( j). Kemeny and Snell showed that the condition is necessary for 
collapsibility to obtain over all possible initial vectors of the Markov chain. From our 
earlier discussion, it is apparent that if one matrical representative is collapsible to 
another, then all the matrical representatives associated with each of the original 
representatives by (2) are equivalent with respect to likelihood. In effect, then, 
collapsibility between any two matrical representatives can be viewed as collapsibility 
between their respective equivalence classes with respect to likelihood as defined by 
equation (2). 
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APPLICATIONS 

We present three examples to illustrate the concepts developed above. We would 
like to point out a unifying theme in our approach to all of these examples. 

Although no algorithm has been given for reducing the parameter space of an MT, 
an heuristic that we have used successfully is to attempt to diagonalize the submatrices 
of the transition matrix that define transitions between states associated with the same 
response.4 In the notation given in equation 3, below, the matrices to try to diagonalize 
are W and Z. 

f-W 
A= 

f -wJ 

There are two good reasons why this heuristic is useful. Firstly, diagonalizing these 
submatrices usually reduces the number of nonconstant entries in these submatrices. 
This may reduce the overall number of parameters unless a larger number of non- 
constant parameters are introduced into the off-diagonal submatrices of the representa- 
tion that results. There is no reason that the overall number must be reduced by 
diagonalizing Wand Z. However, often that is the case. 

The second reason is more subtle. Diagonalizing these submatrices is one means of 
rewriting the matrical representation in a form that can be called “observable.” (See, 
e.g., Restle & Greeno, 1970.) By observable we mean that given the observed sequence 
of responses, the theoretical state on each trial is definitely determined. Thus, if the 
observable response on trial K, d, , along with response history dl ... dk--l , determines 
that on trial K the underlying Markov process must have been in one particular state, 
the model is observable. Obviously, an observable model has all of its nonconstant 
entries exactly estimable from data, and in an observable model, these entries constitute 
a minimally sufficient parameter set. Since diagonalizing these submatrices gives a 
model in which transitions are disallowed between states with the same response, this 
rewriting is in the direction of rendering the model observable,5 and the parameter 
space may be reduced. 

We now proceed with three examples. First, consider two theories of all-or-none 
learning, Model I assuming that learning can occur only following errors (Bower & 
Trabasso, 1964; Restle, 1962). Each of the theories has three states: L, an absorbing 

4 The usefulness of this technique was pointed out to us by Richard Schensted. 
5 The reader may convince himself that in general for a model to be in observable form each 

state may have only one nonzero exit probability to each class of the partition defined by the 
inverse image off, i.e., the partition whose typical class is of the form f-r(&). 
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state where correct responses occur; S, a transient state where correct responses occur; 
and E, a transient state where errors occur. Initial vectors and transition matrices for 
the two cases are as follows: 

Model I : 

Model II: 

01 = (2% 4, 1 --P-Q) 

0 
A, = 

i 1 
a (1 - u)g (1 - a)(1 -g) 
a (1 

- 0 

“>g (1 

- 

4u -g) 1 

(4) 
02 = (T, s, 1 - r - s) 

0 
l-j 

’ - k)(l -j) 

Since errors occur only in the third state, the state-response matrices for both theories 
are as follows: 

c (5) 

Models I and II are equivalent in likelihood, as Green0 and Steiner (1964, 1968) 
showed, when corresponding values of their parameters are used. (It follows that the 
theories cannot be distinguished by binary data.) Both Model I and Model II are 
equivalent in likelihood to the following theory in the same states: 

Model III: 

vs = (t, 11, 1 - t - U) 

A, = 
i 

: (1: c)f (1 - C;l -f) . 
1 

(6) 
d (1 - 4.f (1 - d)(l - f) 

The state-response matrices for Model III are also those given by Eq. (5). To show that 
these three models are equivalent we apply Eq. (2) using the following change matrix. 

(7) 

O1 = 1 _ (f _ G)f , and obtain 
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Model III’: 

V3’ = v3P3 = (t + 2401, u(l - a), 1 - t - u) 

1 0 
A,! = P,-IA,P, = 

( d + (lo- d)fa 
(1 !Y 4f 1 - (1 - c)f . 

i 
(8) 

(1 - d)f(l -4 (1 -4u -f> 

Clearly, Model III’ is equivalent to Model II except for notation. 
Thus Model III is equivalent to Model II which in turn is equivalent to Model I. The 

substitution relations of parameters of Model II and Model III are 

i = (1 - c>f, 
(1 - 4fc 

k = 1 - (1 - c)f + d. 

The relationships between parameters of Model II and Model I are 

j = (1 - 4g, 

k = (1 - 4P 
1 - (1 - a)g + a. 

Using these substitutions it can be shown that choosing probabilities as parameters in 
one of the three models leads to parameters in the other two equivalent models that are 
also probabilities. As noted above, the parameters of an equivalent matrical representa- 
tion are not always probabilities. However in this case they are and all models do 
satisfy our definition of a Markov theory. Since Model III is a theory with five 
parameters, and the theory is equivalent in likelihood to other models having only four 
parameters, we see that the parameters of Model III are not minimal; that is, (6) is not 
identifiable. 

A second example shows a reduction in the state space of a theory. A model assuming 
all-or-none learning, but with a state corresponding to short-term retention, has been 
studied by Atkinson and Crothers (1964), Bernbach (1965), Green0 (1967), Green0 
and Steiner (1969), and Kintsch (1966). The states are L, H, and S, giving correct 
responses, and E, giving errors. Initial and transition probabilities are as follows: 

Model IV: 

1 0 0 0 

A, = a (l - ‘jh (l - ‘>(l - h)g (l - d(l - h)(l -d 
b (1 - b)h (1 - b)(l - h)g (1 - b)(l - h)(l -9) * 
b (1 - b)h (1 - b)(l - h)g (1 - b)(l - h)(l -g) 
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The state-response matrices are 

It has been shown that Model IV is equivalent in likelihood to a three-state theory 
in the form of Model II (Greeno, 1967). For this to be true, there must be a four-state 
theory, equivalent in likelihood to Model IV, that is collapsible into Model II. One 
such four-state theory was found by Greeno, Millward, and Merryman (1971), with 
transition parameters 

i 1 0 0 0 

A,, = 0 x Y l-x-y 

OXY l-x-y 
x 2, w l--s--v---z i 

, (10) 

x = (1 - a)h, y = (1 - b)(l - 4g, 

ah + b(1 - h) 
8= 1-x-y ’ 

‘u = (1 - 4(1 - b) w - w -A9 
l-x-y , 

w = (1 - w (1 - Y2g(l -if) 
l-x-y . 

A change matrix that transforms A, into A,, is 

I (11) 

a - (a - b)(l - h)g 
8= 

ah + b(l - h) 
lx = 1 - (1 - u)h - (1 - b)(l - h)g ’ 1 - (1 - u)h - (1 - b)(l - h)g * 

4 , clearly is collapsible, so Model II is reached with j = x + y, and (1 - K)j = 
v + w. 

For the final example, we consider the transition matrix of a quite general model of 
two-stage learning. 
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Model V: 

1 0 
c (1-Y c)i 0 (1 - c;1 -2.) 

0 
0 

A, = ae a(1 - e)h (1 - u)g a(1 - e)(l - h) (1 - a)(1 -g) 
d (1 - d)i 0 (1 - d)(l - i) 0 
bf b(1 -f)h (1 - b)g b(1 -f)(l - h) (1 - b)(l -g) i 

, (12) 

A change matrix that gives another Markov learning theory is 

( 1 0 0 00 
a 1-U 0 00 

p5= B 
0 ; 

1-p-r ) 
0 

0 0 1 
1 0 

0 0 0 6 l-8 

C 

a = 1 - (1 - c)i ’ 
p = ae[l - (1 - c)i] + a(1 - e) hc 

[l - (1 - c)i][l - (1 - u)g] ’ (13) 

a(1 - e) h(1 - c)(l -i) 
y = [l - (1 - c)i][(l - c)i - (1 - u)g] ’ 

Nl -f)U - 4 
’ = (1 - d)(l - i) - (1 - b)(l -g) ’ 

The transition matrix obtained by applying P5 is 

1 0 0 0 
0 1-(1-c)i 0 

A,< = 0 0 (l:g)g 1-(1--a)g--x 0 ) 
I-(1-d)(l-i)-y y 0 (1-d)(l-i) 

I-(1--b)(l-g)--w--z z w 0 (141-d 

x = (1 - w - 4u - 67) 
1-p-r ’ 

y = (1 - c)(l - i)(l - d)i 
1 - (1 - c)i ’ 

eu = (1 - B - N - 4g 
1-s ’ 

z = (1 - 4[b(l -f)h - SC1 - 44 + ~(1 - Qg 
1-s 
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Note first that A,, contains the eigenvalues of the submatrices of transition among 
states giving correct responses, and among states giving errors. The parameterization 
obtained thus reduces the parameter space by fixing some of the parameters at zero. 
Further, some of the dependencies among parameters are maintained. In both A, and 
A,, , the entries (3, 3), (3, 5), (5, 3), and (5, 5) form a matrix with determinant zero, 
as do the entries (2, 2), (2,4), (4, 2), and (4,4). Taking these two dependencies into 
account, we see in A,> that the two-stage theory given as (12) has at most six identifiable 
parameters in its transition matrix. 

CONCLUSIONS 

The main development in this paper is a concise way of characterizing classes of 
Markov theories that are equivalent in likelihood. The fact that similarity equivalence 
classes are contained in equivalence classes determined by the likelihood function 
demonstrates a connection of the analysis of Markov learning theories with a funda- 
mental aspect of linear algebra. 

One implication is that we now have a convenient way of generating new matrical 
representations equivalent in likelihood to a given model. This is potentially useful in 
applications, since equivalent versions of a model may exist in a form that is more 
convenient for calculations. It is also useful to be able to determine whether different 
versions of a model, having different psychological interpretations of the states, are 
empirically distinguishable. The existence of a change matrix relating two models as in 
(2) is sufficient to demonstrate the models are not distinguishable. 

A second implication involves use of the equivalence relation in studying the 
identifiability of a given model. A finding of considerable potential application is that 
for some models, a set of sufficient parameters includes the eigenvalues of the sub- 
matrices of states that have the same response. We still do not have an algorithm for 
finding minimal sufficient parameters for a model, but the present results give us 
one further step in the process of reducing a nonidentifiable parameter space. 
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