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Abstract

Stimuli varying in intensity and chromaticity, presented on numerous backgrounds, were classified into red/green, blue/yellow
and white/black opponent color categories. These measurements revealed the shapes of the boundaries that separate opponent
colors in three-dimensional color space. Opponent color classification boundaries were generally not planar, but their shapes could
be summarized by a piecewise linear model in which increment and decrement color signals are combined with different weights
at two stages to produce opponent color sensations. The effect of background light on classification was largely explained by
separate gain changes in increment and decrement cone signals. © 1999 Published by Elsevier Science Ltd. All rights reserved.

Keywords: Color; Opponent; Hue; Cancellation; Cone

1. Introduction

This paper describes quantitative measurements of
how observers classify simple stimuli as red or green,
blue or yellow, white or black. These mutually exclusive
opponent colors, first described by Hering (Hering,
1878), are thought to reflect the representation of color
in the central visual system. The goal of this work is to
elucidate how the visual system combines signals from
the three types of cone photoreceptors to create oppo-
nent color sensations.

This question was first addressed experimentally in
the hue cancellation experiments of Jameson and Hur-
vich. They measured the amount of a standard stimulus
that, combined with a test stimulus, caused the mixture
to appear neither red nor green (similarly for blue/yel-
low; luminosity judgments were used for white/black).
These measurements were interpreted using a linear
model whose central assumption was that the magni-
tude of each opponent sensation is determined by a
weighted sum of the quantum absorptions in each of
the three cone types (Jameson & Hurvich, 1955). The
linearity of opponent colors has been tested in a num-
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ber of experiments, and significant failures have been
observed (e.g. Larimer, Krantz & Cicerone, 1975; see
Section 4). While the presence of a nonlinearity is
certain, its form is not, so linear opponent models
remain in use in spite of the empirical evidence. To
clarify the rules governing opponent color classification,
including important nonlinearities, the present work
incorporates three main principles.

First, observers classified stimuli of moderate con-
trast presented on a variety of photopic backgrounds.
This stimulus choice parallels the contrast variation in
signals arriving at the eye in the natural world as well
as in many applications. It differs from the conven-
tional approach of fixing a single (usually dark) back-
ground and presenting stimuli of widely varying
intensity. In a moderate contrast range one may ob-
serve a simpler but important aspect of visual system
performance.

Second, a three dimensional description of stimuli
was used to represent measurements and examine the
workings of opponent mechanisms. This approach is
more general than the approach used in early studies
which were based on measurements with spectral lights.
Representing stimuli in three-dimensional color space
allows a compact and intuitive description of hue clas-
sifications: the classification boundary. The red—green
classification boundary, for example, partitions the
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three-dimensional space of visible colors into two re-
gions corresponding to red and green sensations (simi-
larly, blue/yellow and white/black). This geometric
representation provides a complete description of oppo-
nent color classification (Knoblauch, Sirovich &
Wooten, 1985).

Third, a geometric description of classification
boundaries was developed. This can be used to test
models of the neural computations that underlie oppo-
nent color sensations. Also, because light adaptation
influences color appearance it changes the shape of
classification boundaries. A geometric description of
these changes can be used to test models of adaptation.

2. Methods
2.1. Observers and stimuli

Two paid male undergraduates (ES and RR) and one
paid female of similar age (KS) participated in the
experiment over a period of several months. These
observers had normal color vision according to the
Ishihara plates (Ishihara, 1977). Observers RR and KS
used their normal untinted corrective eyewear during
experiments.

Observers viewed a cathode ray tube (CRT) com-
puter monitor from a distance of 23 cm in a dark room.
The uniform background on the display occupied the
central 59 horizontal and 45 vertical degrees of visual
angle. Square test stimuli 2.5° on a side were flashed at
the center of this background for 375 ms. The remain-
der of the visual field was occupied by a hood lined
with wrinkled aluminum foil (75% spectrally flat reflec-
tance) which acted as a partial diffuser. Because the test
stimulus covered only 0.2% of the area of the display
and was only present for brief periods, the light
reflected from the hood had approximately the same
relative spectral power distribution as did the back-
ground on the display. Backgrounds were chosen to
span the range available on the display while allowing
test stimuli of many different colors to be presented.
The average background luminance used was about 50
cd/m?. The color names of backgrounds reported in the
text describe their appearance to the authors when
viewed at a distance in a dark room. Observers sig-
nalled responses using a hand held button box.

2.2. Task and experimental design

For the red—green task observers were instructed to
classify flashed targets as either reddish or greenish.
Observers found the task fairly easy and did not indi-
cate a desire to classify stimuli as both reddish and
greenish. Similarly for the blue—yellow task. For the
white—black task, observers were asked to indicate

whether the flashed target contained a component of
white or black. Observers had more difficulty with this
task and found it helpful to compare the lightness of
the target to that of the background. Classification data
were used only after each subject reported clear and
unchanging criteria. After a few sessions, naive observ-
ers ES and KS as well as the authors made stable
white—black classifications. Experienced observer RR
found the white—black task difficult and did not per-
form it.

A session consisted of 48 trials in which only one
type of classification was performed; here we use red—
green classification as an example. Sessions were per-
formed in contiguous blocks of four, in which the
background light was fixed. Observers began a block by
viewing the background for 2 min, after which it gener-
ally took on a desaturated appearance. The observer
then began a session by viewing a stimulus A chosen by
the experimenter to be plainly reddish, and a second
stimulus B chosen to be plainly greenish. The observer
confirmed this description of A and B, or aborted the
session. All stimuli in the remainder of the session were
created by mixtures of these two primaries, e.g. oA +
(1 —«)B where 0 <o < 1 is the mixture fraction. When
represented in a three-dimensional color space, each
stimulus fell on a line between A and B.

The observer then coarsely adjusted the mixture frac-
tion o to a value where the stimulus appeared roughly
in equilibrium, i.e. neither reddish nor greenish. A ran-
domized value near this value of « was used as a
starting point for subsequent trials. In each trial the
observer classified a flashed stimulus o4 + (1 — «)B as
reddish or greenish. The observer could take as long as
desired for each classification; typically each trial lasted
several seconds. The next trial was initiated immedi-
ately after the response. During trials, the mixture
fraction o was adjusted over about seven levels accord-
ing to the observer’s classifications using a double-ran-
dom staircase procedure which kept the stimulus near
equilibrium.

The data from each session were used to obtain one
estimated equilibrium stimulus (see below). For each
observer and each background and each task (red-
green, blue—yellow, white—black) about 24 equilibria
were obtained, each using different primaries. Pairs of
primaries were chosen to span the range available on
the display. For example, in the red—green task one
choice of primaries might appear purple and aqua-
marine, another might appear orange and green. Each
observer repeated measurements once or twice for each
set of primaries on a specific grey background to obtain
an estimate of measurement variability. From observer
ES (KS, RR), a total of 480 (390, 568) red—green, 501
(404, 583) blue—yellow, and 514 (352, 0) white—black
equilibria were obtained on a total of 19 (13,19)
backgrounds.
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2.3. Estimating opponent color equilibria and variability

During each session, as « increased from 0 to 1 the
probability P(x) that the observer responded red in-
creased from 0 to 1. The value of the mixture fraction
that would in principle have yielded exact red—green
equilibrium was estimated as follows. First, a maximum
likelihood method was used to estimate the mean and
standard deviation parameters of a cumulative Gaus-
sian fit to P(«) (Watson, 1979). The value & for which
P(@)=10.5 was obtained from this fit. The stimulus
given by @A + (1 — @)B was taken to be an equilibrium
stimulus.

When fitting models each measurement & was
weighted by an estimate of its reliability (see below)
because the variance of equilibrium measurements de-
pended on the primaries used as well as on the back-
ground light. For example, red—green judgments of
nearly achromatic stimuli were less variable than red—
green judgments of bluish stimuli. The large number of
different stimulus conditions precluded obtaining direct
estimates of the variability of & for each condition.
Since psychometric functions with shallower slopes
should give rise to more variable estimates of the
midpoint, it was assumed that the standard deviation &
of the estimated equilibrium mixture fraction & was
proportional to the standard deviation parameter of the
cumulative Gaussian fit to the psychometric function
P(a) (see above). Since only the relative values of ¢
under different conditions were relevant for hypothesis
testing, the constant of proportionality was taken to be
one.

However, this estimate of ¢ was plainly too small in
sessions where the values of o used were widely sepa-
rated. For example, in some cases, for all measured
values of o > & the observer gave only red responses,
and for all values o« < & the observer gave only green
responses. The cumulative Gaussian function that best
fits such data has a standard deviation parameter of
zero. Since ¢ =0 seemed unrealistic and made model
fits unstable, 6 was not permitted to be smaller than the
largest standard deviation parameter of the cumulative
Gaussian fit to P(«) that could have generated the
observations with probability 0.05, assuming that each
trial was an independent binomial draw with mean
value P(«). This minimum value for ¢ depends on the
number of trials, the spacing of the values of o used,
and the observed classifications.

2.4. Data representation

The spectral composition of a stimulus is represented
by either the monitor phosphor intensities (R G B) used
to create the stimulus (monitor coordinates), or values
proportional to the quantum absorptions (L M S) in-
duced by the stimulus in each of the three types of cone
photoreceptors (cone coordinates). The light transiently
added to or subtracted from the background to create
the test stimulus is also represented by three numbers,
e.g. (AR AG AB) or (AL AM AS).

The monitor coordinates and the cone coordinates of
stimuli are related by a 3 x 3 linear transformation
whose entries are proportional to the quantum absorp-
tions induced by each monitor phosphor in each of the
three cone types (Wandell, 1995). This was calculated

Fig. 1. Red—green classification boundary. The three-dimensional coordinates of each point represent the cone quantum absorptions associated
with a red—green equilibrium stimulus, expressed as differences (AL AM AS) from the background quantum absorptions. A smooth surface
passing through the points is shown to aid visualization (see Section 2). The two panels show rotated views of the same data and surface.
Additional dashed lines in the right view are drawn to emphasize the bend in the data. Error bars extending from points indicate + 1 standard
deviation of the psychometric function associated with the equilibrium measurement, and point in a direction joining the two stimulus primaries
used (see Section 2). In this figure most error bars are smaller than the points. A total of 24 equilibrium measurements are shown though some
are obscured by the surface. The background had a greenish appearance when viewed from a distance in a dark room. Background cone
coordinates: (0.103 0.103 0.0617). Axis lengths: (0.0323 0.0327 0.0459). Observer: ES.
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Fig. 2. Red—green classification boundary. Same data as Fig. 1, in monitor coordinates; the three-dimensional coordinates of each point represent
the red, green and blue monitor phosphor intensities of a red—green equilibrium stimulus, expressed as differences (AR AG AB) from background
phosphor intensities. Background gun intensities relative to maximum: (0.2 0.85 0.5). Axis length: 0.51. Observer: ES.

by multiplying and integrating measurements of each
phosphor emission spectrum (in watts/sr/nm, measured
between 370 and 730 nm at 1 nm resolution) by the
spectral sensitivity of each cone type (Stockman,
MacLeod & Johnson, 1993) normalized to a maximum
of 1, yielding:

L 0.044490 0.098416 0.020081 R
M | = | 0.017180 0.099258 0.029193 G
S 0.001817 0.007694 0.111120 B

where (R G B) coordinates between 0 and 1 represent
the gamut of the display and (L M S) quantum absorp-
tions are in arbitrary units.

The shaded surfaces shown near the data in figures
were created as follows. The best-fitting plane to each
three-dimensional data set was obtained. Raw data
vectors (a b ¢) were linearly transformed to a new repre-
sentation, (pgr)=(abc) M, in which the first two
coordinates (p ¢) are projections onto two orthogonal
basis vectors within the plane. The (p ¢ r) values were
then interpolated using triangle-based cubic interpola-
tion to create a set of points (p'¢’'r’) whose (p' ¢’)
values constitute a finely spaced grid in the plane. A
Delaunay triangularization was created from the inter-
polated points (p’ ¢’ ') combined with the original data
(p ¢ ). The vertices of these triangles were then con-
verted back to the original coordinate frame using the
inverse of M. To create triangles extending beyond the
data, extreme data points were first replicated with a
scaling of 1.4 (replicated points are not shown in the
figures). For the pooled data of Figs. 10 and 11 trian-
gles were created from model predictions rather than
data. The resulting collection of triangles, with data
superimposed, was imaged using Geomview software
produced by the Geometry Center at the University of
Minnesota.

2.5. Equipment and calibration

Stimuli were displayed on a Hitachi HM-4320-D
color computer monitor controlled by an eight-bit
Number Nine Graphic Systems video card refreshed at
88 Hz (non-interlaced) at a spatial resolution of 640
(horizontal) x 480 (vertical) pixels. The luminance of
the display with all guns set to maximum intensity was
104 cd/m?. Intensity stability was checked every few
days using a Minolta ChromaMeter.

The spectral emission of the monitor phosphors was
measured using a PhotoResearch PR-703A Spectral
Scanner, and the digital control value to phosphor
intensity relation (gamma curve) using a PhotoRe-
search 2009 Tele-Photometer. The CRT calibration
procedure used is described by Brainard (Brainard,
1989; see also Wandell, 1995). Between calibrations
gamma curves and gun spectra typically changed no
more than a few percent.

As with many CRT monitors, the Hitachi display
intensity was not spatially uniform, but peaked in the
center and decreased smoothly to about 80% of maxi-
mum at the edges of the display. Calibration measure-
ments were made at the center of the screen where test
stimuli were presented. No attempt was made to correct
for the spatial intensity inhomogeneity.

2.6. Model fitting

The models that will be considered for hue classifica-
tion all make predictions for the mixture fraction re-
quired to bring the mixture of a pair of primary stimuli
A and B into equilibrium. That is, any given model
predicts a value & which will cause the mixture a4 +
11— o?)é to be classified red or green with equal proba-
bility. To obtain model fits to the data that are
independent of the color coordinate frame in which
stimuli are represented, and which take into account
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the reliability of each measurement, model parameters
were chosen to minimize the difference between the
measured mixture fraction & and the model prediction
d, expressed in units of the estimated standard devia-
tion ¢ of &: e=(d — &)/é. This distance will be referred
to as the psychometric distance between model predic-
tion and data, or as the psychometric error associated
with the model prediction. Assuming ¢ is an accurate
estimate of the standard deviation of the measurement
&, e will be approximately normally distributed with
unit variance, and the sum squared error (SSE) value

i (ei)z

i=1

summed over n equilibrium measurements will be ap-
proximately y2 distributed with n degrees of freedom.
Model parameters were chosen to minimize the SSE,
since this provides a maximum likelihood estimate. This
procedure is equivalent to minimizing the root mean
square (RMS) psychometric error:

The RMS error rather than the SSE is used to report
the quality of the model fits because (a) it has the same
units as individual psychometric errors; and (b) it does
not depend on the total number of measurements.

Though these statistical calculations were used to
assess the quality of models, rigorous statistical hypoth-
esis testing was not applied to models because the
requisite distribution assumptions are very unlikely to
hold.

Fitting models to equilibrium data involved iterative
searches for parameters that minimized the RMS psy-
chometric distance between model predictions and data.
Because the searches sometimes encountered local min-
ima, it is not certain that these were the best possible
fits of the model. Fits were obtained using two opti-
mization algorithms and a number of randomized ini-
tial parameters.

3. Results

3.1. Opponent color classification boundaries

Opponent color classification boundaries were gener-
ally nonplanar surfaces that passed near or through the
background and varied with background light. The
shape of one red—green classification boundary mea-
sured on a greenish background is shown in Fig. 1. The
equilibrium stimuli shown appeared bluish, yellowish,
and various shades of grey. The left view shows the
data dispersed on a two-dimensional surface. The right
view shows that the data collapse onto a bent line when
viewed from a particular angle. Thus in three dimen-
sions these data fall near a bent plane. Since all stimuli
visible to the observer may be represented in this three-
dimensional color space, the boundary formed by the
data summarizes the red—green classification behavior
of this observer in these experimental conditions.

The primary bend in the red—green classification
boundary of Fig. 1 occurs near the achromatic locus, i.e.
the set of stimuli which appear neither red, green,
yellow, nor blue. This locus consists of points near the

Fig. 3. Red—green equilibrium stimuli viewed on a yellowish green background. Background gun intensities relative to maximum: (0.44 0.69 0.22).
Number of points: 24. Axis length: 0.71. Observer: RR. Other details as in Fig. 2.
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Fig. 4. Blue—yellow equilibrium stimuli viewed on a purple background. Background gun intensities relative to maximum: (0.47 0.23 0.72).
Number of points: 24. Axis length: 0.49. Observer: RR. Other details as in Fig. 2.

line defined by AL =AM = AS. It is oriented approxi-
mately orthogonal to the printed page in the right panel
of Fig. 1, emanating from the origin. The data to the
left of the bend (bluish stimuli) and to the right of the
bend (yellowish stimuli) each appear to fall on a
roughly planar surface (Burns, Elsner, Pokorny &
Smith, 1984; Mausfeld & Niederee, 1993).

3.2. Opponent classification is generally not linear

If the visual system computed opponent colors lin-
early, the classification boundary in Fig. 1 would be a
plane. Suppose the red—green signal RG was a linear
combination of cone quantum absorptions, plus an
optional constant:

RG=aL+bM+cS+d (H

Then points falling on the red—green boundary (i.e.
zero red—green sensation) would satisfy RG = 0. This is
the equation of a plane in (L M S) space. The non-pla-
narity of the boundary in Fig. 1 is inconsistent with a
linear opponent color computation.

This deviation from planarity was visually significant.
Were opponent classifications linear, the mixture of two
equilibrium stimuli would also be in equilibrium. The
mixture of two extreme points on the surface in Fig. 1
predicted an intermediate equilibrium stimulus which
was more than 12 psychometric function standard devi-
ations away from the measured equilibrium (see Section
2). In other words, this mixture would easily be
classified red by the observer on all trials.

The non-planarity of these data confirms previous
studies showing that red—green opponent color classifi-
cation is not generally based on a linear combination of
cone absorptions (e.g. Ayama, Kaiser & WNakatsue,
1985; see Section 4). It also indicates that opponent
classification is not generally based on a linear combi-
nation of differences between cone signals and a neutral
point (Walraven, 1976), since Eq. (1) includes this case.

3.3. Shapes of classification boundaries

Additional features of classification boundaries are
most easily visualized by examining the monitor coordi-
nates (R G B) of equilibrium stimuli. Though (L M S)
coordinates are more physiologically interpretable,
(R G B) coordinates are more evenly dispersed in plots,
and equidistant points more closely approximate
equally distinguishable stimuli. Since (R G B) and
(L M S) coordinates are related by a linear transforma-
tion (see Section 2), the qualitative features of
boundaries discussed here do not depend on the coordi-
nate frame in which data are represented. For example,
Fig. 2 shows the data from Fig. 1 in (R G B) coordi-
nates. The non-planarity of these data relative to mea-
surement error is equally statistically significant in both
representations, since measurement error was estimated
in units that do not depend on the coordinate frame
(see Section 2). But the bend is more obvious in Fig. 2.
More subtle features of classification boundaries are
substantially easier to see in (R G B) coordinates, so all
remaining equilibria are plotted this way.

Classification boundaries often had more than a sin-
gle bend. An example is the red—green boundary shown
in Fig. 3. The surface has a significant bend along the
achromatic locus but is not simply a bent plane. In
three dimensions this boundary appears roughly coni-
cal, with its concave side oriented down in the right
panel. Similar shapes can be seen in the blue—yellow
boundary of Fig. 4 and the white—black boundary of
Fig. 5, with concave sides pointing up in the right panel
of these figures.

Large systematic deviations from planarity were ob-
served in the red—green and blue—yellow boundaries of
observer ES (19 backgrounds), and red—green
boundaries of observer RR (13 backgrounds). Smaller
but systematic deviations were observed in the blue—
yellow boundaries of observer RR and white—black
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boundaries of observer ES. For these observers the
concave side of red—green boundaries always corre-
sponded to stimuli classified as red (e.g. the lower
right side of the right panels in Figs. 2 and 3). That
is, the mixture of two red—green equilibrium stimuli
could result in a reddish stimulus, but not a greenish
stimulus (Burns et al.,, 1984). This conclusion was
supported by fitting each classification boundary with
an elliptical cone (conical surface with elliptical or-
thogonal cross-sections) and examining the orienta-
tion of the best fit (not shown). This analysis also
revealed that the concave side of blue—yellow
boundaries for these observers corresponded to stim-
uli classified as yellow (e.g. Fig. 4) (Burns et al.,
1984; DeValois, DeValois, Switkes & Mahon, 1997).
For observer ES, the concave side of white—black
boundaries tended to correspond to stimuli classified
as white (e.g. Fig. 5).

However, some classification boundaries were
nearly planar. An example is the white—black
boundary shown in Fig. 6. The left view shows equi-
librium stimuli dispersed on a two-dimensional sur-
face. The right view shows that the data collapse
onto a line when viewed from a particular angle, in-
dicating a planar surface. An example of a roughly
planar blue—yellow boundary is shown in Fig. 7.
Classification boundaries from observer KS were gen-
erally not distinguishable from planes. This con-
clusion was supported by the observation that ellipti-
cal cones fitted to this observer’s classification
boundaries were not systematically oriented in one
direction, and provided only a slightly better fit than
planes (not shown). This indicates a qualitative differ-
ence in the opponent colors classifications of different
observers.

AG

v
AT
~4 s

AB

3.4. Classification boundaries do not always contain the
background

Most classification boundaries such as the one in
Fig. 2 passed through or very near the origin, which
represents the background. Because the background
for the data in Fig. 2 was not in equilibrium (it ap-
peared greenish), one interpretation of this observa-
tion is that hue classifications were based on the
difference between the test stimulus and background
light. Walraven refers to this as discounting the back-
ground (Walraven, 1976). However, some boundaries
did not pass through the origin. An example is the
blue—yellow boundary shown in Fig. 8. The left view
shows the data dispersed on a two-dimensional sur-
face. The right view shows that the surface containing
the data does not include the origin. Thus opponent
classifications are not based exclusively on the differ-
ence between test stimulus and background light
(Shevell, 1978, 1980).

3.5. Classification boundaries vary with background
light

As expected, the shapes of classification boundaries
are affected by background light. Fig. 9 shows how
the red—green classification boundary for one ob-
server changed when stimuli were viewed on a pink
background or a green background.

3.6. Modeling the shapes of classification boundaries
The shapes of classification boundaries depend on

the opponent computations performed by the visual
system. Therefore, models of boundary shapes may

Fig. 5. White—black equilibrium stimuli viewed on a grey background. Background gun intensities relative to maximum: (0.27 0.24 0.32). Number

of points: 24. Axis length: 0.63. Observer: ES. Other details as in Fig. 2.
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Fig. 6. White—black equilibrium stimuli viewed on a grey background. Background gun intensities relative to maximum: (0.27 0.24 0.32). Number

of points: 24. Axis length: 0.59. Observer: KS. Other details as in Fig. 2.

help elucidate these computations. Boundary shapes
were reasonably well described using the following
piecewise linear model for hue classification.

3.7. Model specification

The model transforms a stimulus into a hue classifi-
cation. Each stimulus is represented by the quantum
absorptions (L M S) it induces in each of the three
types of cone photoreceptor. The first stage of the
model computes the difference between (L M S) and a
neutral point, (L M S).

(LMS)=(LMS)—(LMS) )

A common neutral point is postulated for red—green,
blue—yellow and white—black classifications on each
background. (For these experiments, the neutral point
is not very different from the background cone absorp-
tions (Walraven, 1976; Shevell, 1978)). The signals
(L M S) are segregated into increment (positive) and
decrement (negative) components, multiplied by sepa-
rate gain factors (Mausfeld & Niederee, 1993;
Chichilnisky & Wandell, 1996), and recombined to
create intermediate signals:

L*=g¢g®L for L>0
g9L for L<0
M*=g®M for M>0
oM for M<0
S*=g®S for S>0
g$s for $<0

3)

Gain values (e.g. gP, and g®) are non-negative and
depend on the background light. The model classifies a

stimulus as reddish if the intermediate signals satisfy
two inequalities:

aoL* + byM* + ¢,S* >0
aL* + b M* 4+ ¢;,S*>0 4)

for some constants a,, by, ¢y, @y, by, ¢;. Otherwise, the
model classifies the stimulus as greenish. Similar in-
equalities are postulated for blue—yellow and white—
black classifications. This model of hue classification
will be referred to as the increment—decrement oppo-
nency or IDO model.

3.8. Model boundary shape

Consider the classification boundary that separates
stimuli classified by the IDO model as reddish from
stimuli classified as greenish. If stimuli are plotted in a
space whose axes are the intermediate signals
(L* M* S*), then because the opponent computation
of Eq. (4) consists of two linear inequalities, the
boundary separating reddish from greenish stimuli
takes the form of a bent plane: one planar portion of
this surface arises from the first inequality, the other
portion from the second. When plotted in a space
whose axes are the raw cone coordinates (L M S) (or a
linear transformation of them, such as (R G B)), the
classification boundary contains three additional bends
at the transition from increments (e.g. L > 0) to decre-
ments (e.g. L <0), introduced by the asymmetric gain
on increments (e.g. g¥) and decrements (e.g. g2). The
angle of each bend depends on the magnitude of this
asymmetry. Therefore the IDO model predicts a piece-
wise planar classification boundary formed by a plane
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bent four times, with each bend passing through the
neutral point.Model evaluation

The piecewise planar surface predicted by the IDO
model provided a good approximation to the observed
shapes of classification boundaries. This finding was
quantified by selecting model parameters to minimize
the root mean square (RMS) psychometric distance
between model predictions and measured classification
boundaries (see Section 2). Data from each observer
and each background were fitted separately, with com-
mon neutral points and increment/decrement gain
enforced for all three types of hue classification on
each background. Pooled RMS differences between
model predictions and measurements are shown in
Table 1. For observers KS and ES, 18 parameters
determined all three model boundaries (red—green,
blue—yellow, and white—black) on each background,
whereas these observers usually made 72 total equi-
librium settings on each background. For RR, 14
parameters determined two model boundaries (red—
green and blue—yellow) on each background, whereas
RR usually made 48 equilibrium measurements per
background.

To evaluate the quality of the model fits relative to
measurement error, the variability of repeated measure-
ments is also given in Table 1. These were obtained
with one to three repeats of each equilibrium measure-
ment on a neutral grey background. The variability in
repeated measurements was similar to the errors associ-
ated with the IDO model predictions. In fact, most of
the IDO model errors were smaller. Two factors may
contribute to this. First, repeat measurements were
made across multiple days, while most model fits were
made to classifications performed within one or two
days. Hue classifications may have larger day-to-day
than within-day variability. Second, the large number
of model parameters compared to the number of mea-
surements for each boundary may result in over-fitting.
Thus these data should not be taken as strong empirical
support for the IDO model, but as a demonstration of

the adequacy of a piecewise planar surface for describ-
ing the shapes of classification boundaries.

3.9. Modeling the effect of background light

The dependence of opponent classification boundary
shapes on background light could arise from changes in
the neutral point and the gain of cone signals due to
light adaptation (e.g. Werner & Walraven, 1982). Were
this true, classification boundaries measured on differ-
ent backgrounds should merge into a single boundary
when the coordinates of equilibrium stimuli are cor-
rected for the effects of background light. To test this
hypothesis required an assumption about the functional
form of these effects.

3.10. Model specification

Previous  experiments in similar  conditions
(Chichilnisky, 1995; Chichilnisky & Wandell, 1996) sug-
gested that increment and decrement cone signal gain
may vary differently with background light, each ac-
cording to a generalized Weber—Fechner (GWF) rela-
tion (Fechner, 1860). Accordingly, the gain of
increment and decrement L signals was assumed to
vary with the background cone absorptions (Lz; My Sp)
as follows:

p®
® —
8L c®+ [a®Ly+ fOMp+y®S, |
p©
g7 = ©)

0+ | a®Ly+ fOMy+y°S, |

Here, the notation | x | denotes half-rectification:
|x ] =xif x>0, and | x| =0 otherwise. The co-
efficient f®, for example, indicates how strongly M
cone background absorptions reduce L increment sig-
nal gain relative to gain in darkness, which is p® /g ®.
Similar relations were postulated for the gain of incre-
ment and decrement M and S values. These gain values

Fig. 7. Blue-yellow equilibrium stimuli viewed on a yellowish green background. Background gun intensities relative to maximum:
(0.44 0.69 0.22). Number of points: 24. Axis length: 0.65. Observer: KS. Other details as in Fig. 2.
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Fig. 8. Blue—yellow equilibrium stimuli viewed on a bluish background. Background gun intensities relative to maximum: (0.39 0.41 0.82). Number

of points: 24. Axis length: 0.56. Observer: RR. Other details as in Fig. 2.

were assumed to be common for all three classification
tasks (red—green, blue—yellow, white—black) on each
background. The neutral point was assumed to be a
fixed offset from the background, this offset was the
same for all backgrounds.

3.11. Model evaluation

This adaptation model was evaluated by expressing
data from each background as differences from the
best-fit model neutral point (Eq. (2)) and correcting
them for best-fit model gain values (Egs. (3) and (5)),
pooling the corrected data, and fitting the IDO model
(Eq. (4)) to the surface formed by the pooled data.
Common gain values and neutral point were enforced
for red—green, blue—yellow and white—black data from
each observer. In all, 36 independent parameters were
required to fit red—green, blue—yellow and white—black
equilibria from all backgrounds for observers ES and
KS (1495 and 1146 measurements, respectively); 32
independent parameters were required to fit red—green
and blue—yellow equilibria on all backgrounds for ob-
server RR (1151 equilibrium measurements). The
pooled, corrected red—green equilibria from one ob-
server are shown in Fig. 10. Neutral point and GWF
gain corrections cause these data to fall near a common
bent surface. The classification boundary predicted by
the IDO model is shown in the figure. This provides a
reasonable fit, though systematic deviations can be
observed at the extremes. Pooled, corrected white—
black data from another observer are shown in Fig. 11.
In this case, the IDO model boundary shown in the
figure is nearly planar (a plane is a special case of the
piecewise planar model boundary) and fits the data
well.

The errors associated with the combined IDO/GWF
model fits to data from each subject on all backgrounds
are shown in Table 1. These are similar to the variabil-

ity in repeated measurements shown in the table. For
comparison, the table also shows the errors associated
with a null model: pooling cone coordinates of equi-
librium stimuli expressed as differences from a single
background-independent neutral point, and fitting the
IDO model to the pooled data. The errors associated
with this null model are much higher than those associ-
ated with the combined IDO/GWF model, indicating
that the latter model captures trends in the data.
Simply expressing equilibrium measurements as off-
sets from background-dependent neutral points
brought the data from different backgrounds coarsely
into register (not shown). Additionally correcting for
GWF gain values helped correct for changes in
boundary shape such as that shown in Fig. 9. These
findings are consistent with the idea that the effect of
background light on the neutral point and on increment
and decrement cone signal gain can largely explain how
classification boundaries change with background light.

4. Discussion
4.1. Approximate homogeneity, failure of superposition

The results reported here extend the evidence for
nonlinearities in opponent color classification and de-
scribe them more fully across many background condi-
tions. Many studies have demonstrated that opponent
color classifications of intense, saturated lights do not
satisfy the key predictions of a linear model: homogene-
ity and superposition. The homogeneity prediction is
that an equilibrium stimulus should remain in equi-
librium when its intensity is varied. Certain stimuli do
satisfy homogeneity: achromatic stimuli (neither red
nor green, blue nor yellow) remain in equilibrium over
a large intensity range (Walraven & Werner, 1991) as
do certain unique yellows (neither red nor green)
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Fig. 9. Red—green classification boundaries measured on two different backgrounds. Points on boundary marked A (B) represent red—green
equilibrium stimuli viewed on a pink (green) background. The coordinates of each point represent the monitor phosphor intensities comprising
the stimulus, expressed as differences from their respective background gun intensities. Background gun intensities relative to maximum: A
(0.820.29 0.54); B (0.2 0.74 0.53). Number of points: A, 21; B, 24. Axis length: 0.55. Observer: ES. Other details as in Fig. 2.

(Larimer, Krantz & Cicerone, 1974; Cicerone, Krantz
& Larimer, 1975; Ejima & Takahashi, 1985). However
some red—green and blue—yellow equilibria do not
satisfy homogeneity (Cicerone et al., 1975; Larimer et
al., 1975; Ejima & Takahashi, 1985). The superposition
prediction of the linear model is that the sum of two
distinct equilibrium stimuli should also be in equi-
librium. This hypothesis has been rejected repeatedly in
both dark-adapted and photopic conditions (Werner &
Wooten, 1979; Tkeda & Ayama, 1980; Burns et al.,
1984; Ayama et al., 1985; Ayama & Ikeda, 1986). More
recent evidence has also demonstrated increment—
decrement asymmetries in red—green cancellation
(Mausfeld & Niederee, 1993) and achromatic settings
(Chichilnisky & Wandell, 1996), inconsistent with lin-
earity. Therefore opponent color computations on in-
tense saturated lights cannot be understood with a
linear model.

However, many previous equilibrium measurements
were made using zero intensity backgrounds or incre-
mental test stimuli that exceeded the background inten-
sity by several orders of magnitude. The non-planar
shapes of classification boundaries described here show
that linear models cannot explain opponent color com-
putations even for stimuli of moderate contrast. Failure
of linearity in these conditions, which are favorable for
linear responses of visual system neurons (Derrington &
Lennie, 1984), is more surprising.

The present observations differ from some findings in
dark-adapted (Larimer et al., 1975; Ejima & Takahashi,
1985) and light-adapted (Cicerone et al., 1975) condi-
tions in that homogeneity is not rejected. Though clas-
sification boundaries are not generally planar, the
present data suggest that they may be homogeneous in
an extended sense: each boundary appears to consist of

rays emanating from a neutral point near the origin. In
other words, a stimulus that is in equilibrium remains
in equilibrium when its difference from the neutral
point is scaled. Although this was a consistent feature
of classification boundaries, the present data do not
provide a decisive test of homogeneity.

Table 1
Repeatability of and model fits to opponent classification boundaries®

Condition Repeat IDO  Pool/IDO GWF/IDO
Observer: ES

Red-green 1.94 1.42 31.9 2.56
Blue—yellow 2.11 1.67 26.2 3.02
White-black 2.17 0.97 16.0 1.61
Observer: KS

Red-green 2.28 3.05 37.9 4.51
Blue—yellow 4.35 3.09 43.1 3.94
White-black 1.94 1.34 37.1 2.00
Observer: RR

Red-green 3.01 1.68 31.2 2.95
Blue-yellow 3.77 2.08 29.0 3.02

4 Each entry indicates the RMS psychometric distance for all data
from one observer and one task. Each unit of error indicates a
difference between model and measurement equal to the standard
deviation of the cumulative Gaussian fit to the classification psycho-
metric function (see Section 2). Repeat refers to the RMS psychomet-
ric distance between one equilibrium measurement and one to three
repeats of the same measurement. IDO refers to RMS distance
between data and predictions of the IDO model fitted independently
to data from each background. Pool/IDO refers to RMS distance
between data and predictions associated with pooling raw data across
backgrounds and fitting the IDO model to pooled data. GWF/IDO
refers to RMS distance between data and predictions associated with
correcting data for background-dependent neutral points and asym-
metric increment/decrement GWF gain, pooling the data, and fitting
the IDO model to pooled data (see text for details).
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Fig. 10. Pooled and corrected red—green equilibria. The panels show two views of all red—green equilibrium stimuli from one observer expressed
in monitor coordinates. 480 equilibrium measurements on 19 different backgrounds are shown. Each datum is expressed as a difference from its
respective background, and has been corrected for the best-fitting gain values predicted by the generalized Weber—Fechner model for adaptation.
Because of these corrections, axis intensity units are arbitrary. The smooth surface represents the classification boundary predicted by the IDO
model. Model parameters were selected to minimize RMS psychometric error. Observer: ES.

4.2, Incomplete discounting of background light

Previous studies have modeled the appearance of a
small test stimulus on a large uniform background with
two computations: first cone signals at the test location
are subject to background-induced sensitivity changes,
then the background signal is subtracted at a second
stage (possibly color-opponent) (Jameson & Hurvich,
1959; Walraven, 1976; Shevell, 1978). The resulting
signal determines appearance. Some authors have sug-
gested that the subtractive process is partial; something
similar to the background is subtracted at the second
stage (Jameson & Hurvich, 1959; Shevell, 1982). Wal-
raven has defended a more precise and therefore more
useful model: the discounting of the background is
complete (Walraven, 1976). If this were so, one would
expect classification boundaries to include the back-
ground, because a transient signal of zero intensity
should produce no opponent sensation. The present
data sometimes showed deviations from this strong
prediction (see Fig. 8), but these deviations were not
large enough to determine how the subtracted signal
depends on background light.

4.3. Nonlinear models of opponent color signals

The shapes of classification boundaries constrain
models of the neural computations that underlie oppo-
nent colors. Some classes of nonlinearities may be
rejected on purely qualitative considerations. For exam-
ple, symmetric saturation of increment and decrement
cone signals followed by linear opponent combinations

cannot explain classification boundary shapes: such a
model predicts classification boundaries that are sym-
metric about the origin, inconsistent with the concave
boundary shapes in the present data. Also, the apparent
homogeneity in classification boundaries with respect to
a neutral point is not predicted by several nonlinear
models that have been previously proposed (Larimer et
al., 1975; Werner & Wooten, 1979; Elzinga & De
Weert, 1984).

DeValois et al. (DeValois & DeValois, 1993; DeVal-
ois et al., 1997) recently developed a model of color
appearance for simple stimuli which decomposes the
red—green and blue—yellow opponent mechanisms into
four separate representations corresponding to red,
green, blue and yellow. Based on hue scaling data, they
argue that S cone signals contribute differently to the
red and green mechanisms, and to the blue and yellow
mechanisms. Other recent findings have also suggested
asymmetries in opposed color signals (Mausfeld &
Niederee, 1993; Smith & Pokorny, 1996; Shinomori,
Spillmann & Werner, 1998).

A two-stage model based on similar ideas, illustrated
schematically in Fig. 12, can be used to describe the
shapes of classification boundaries and how they vary
with background light. The first part resembles the
classical linear model for opponency, except that adap-
tation separately affects increments and decrements
defined with respect to a neutral point. This is moti-
vated by evidence that the gain of increment and decre-
ment visual signals may be controlled independently
(Chichilnisky & Wandell, 1996). This asymmetry intro-
duces small bends in the classification boundaries at the
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Fig. 11. Pooled and corrected white—black equilibria. A total of 352 equilibrium measurements on 13 different backgrounds are shown. Observer:

KS. Other details as in Fig. 10.

transition from increment to decrement cone signals
(Mausfeld & Niederee, 1993).

In the second part of the model linear combinations
of scaled cone signals are split into increments and
decrements to form pre-opponent signals, which are
then combined to form opponent signals. This architec-
ture is motivated by the fact that a significant bend in
classification boundaries sometimes occurs near the
achromatic locus, i.e. the locus of stimuli that appear
neither red, green, blue nor yellow (e.g. see Figs. 1 and
2). In the model, crosstalk in the linear combination of
pre-opponent signals into opponent signals introduces
such a bend in the classification boundary. For example
the BY® input to RG shown with dashed lines in the
Fig. 12 will give rise to a bend in the red—green
boundary at the achromatic locus, because BY® is
positive for bluish stimuli and zero for yellowish
stimuli.

Because the nonlinearities in this model arise from
increment—decrement asymmetries at two stages, the
model predicts homogeneous piecewise planar classifi-
cation boundaries. Separate handling of increment and
decrement signals could arise from the half-rectification
in visual system neurons.

Since the present results concern equilibrium mea-
surements, which presumably reflect zeroing of oppo-
nent signals, they do not constrain models of the
magnitude of nonzero opponent signals. For example
any model that gives positive values for reddish stimuli
and negative values for greenish stimuli suffices to
explain red—green equilibria. Judgments of quantities
such as saturation, which presumably reflect nonzero
opponent signals, would be required to further charac-
terize the opponent computations.

4.4. Physiological color opponency

The present results suggest the need for further inves-
tigation of the physiological basis of perceptual color
opponency. Prevailing linear models for color oppo-
nency motivated the search for null planes in parvocel-
lular neurons in the lateral geniculate nucleus (LGN) of
macaque monkeys, that is, planes of stimuli in color
space that elicit no neural response (Derrington,

Stimulus
T
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A N Increment/Decrement Split

= @ (N) Gain Control

[J Linear Combination

A A A

RG® RG® BY® BY® wB® WB®

NN N
‘ E‘/ T
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Fig. 12. Model for opponent color classification. Phototransduction
in each of the three cone types linearly combines energy at different
wavelengths. Linear cone signals (L M S) are split into increment and
decrement portions (e.g. L®, L©) with respect to a neutral point (not
shown). The increment and decrement signals are separately scaled by
gain factors that depend only on the background light. The interme-
diate cone signals (L* M* S*) are combined linearly, then separated
into increments and decrements to form pairs of pre-opponent sig-
nals, e.g. RG®, RG®. Finally, the pre-opponent signals are combined
linearly, with some crosstalk, to create opponent signals, e.g. RG. The
signs of the opponent signals control opponent color classification.
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Krauskopf & Lennie, 1984). The non-planarity of op-
ponent color classification boundaries raises the possi-
bility that either individual parvocellular LGN
neurons are not the neural substrate of perceptual
opponency, or that significant nonlinearities in neural
responses were overlooked. The present results sug-
gest that a neuron responsible for red—green percep-
tion would give no response to a collection of stimuli
located on a piecewise planar, but not generally pla-
nar, surface in color space. Such null surfaces may
provide a more exacting test of the role of individual
neurons in opponent color perception.

4.5. Limitations

The present conclusions apply to the range of stim-
ulus intensity and saturation available on CRT dis-
plays. Because of the relatively low luminance it is
possible that weak rod signals played a role in color
appearance judgements (Buck, 1997; Stabell & Sta-
bell, 1998). Conclusions about opponent color compu-
tations are also limited to conditions of small test
stimuli viewed on large uniform backgrounds and
may not extend to general images.

The present findings would be affected in some
ways if observers had non-standard cone spectral sen-
sitivities not revealed by viewing the Ishihara plates
(Ishihara, 1977). Because all stimuli were generated
with the three primaries of the CRT, if an observer’s
cone spectral sensitivities differed from the estimates
used here (Stockman et al.,, 1993), estimates of the
cone absorptions associated with stimuli would differ
from the actual absorptions by a linear transforma-
tion. This error would not affect qualitative conclu-
sions about the shape of classification boundaries. It
would affect model fits, which are based on differen-
tial scaling of increment and decrement cone signals.
Analysis using the Smith and Pokorny cone funda-
mentals (Smith & Pokorny, 1975) provided nearly
identical results.

5. Conclusions

The boundaries separating opponent colors were
measured under a variety of adapting conditions, us-
ing stimuli of moderate contrast. Classification
boundary shapes were generally non-planar, but were
summarized with a piecewise planar model. This
model suggests hypotheses about the neural mecha-
nisms underlying opponent color computations. The
effect of background light on classification boun-
dary shape was largely explained by separate changes
in the gain of increment and decrement cone
signals.
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