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Cross-Subject Comparison of Principal Diffusion

Direction Maps

Armin Schwartzman,'* Robert F. Dougherty,” and Jonathan E. Taylor'

Diffusion tensor imaging (DTI) data differ fundamentally from
most brain imaging data in that values at each voxel are not
scalars but 3 x 3 positive definite matrices also called diffusion
tensors. Frequently, investigators simplify the data analysis by
reducing the tensor to a scalar, such as fractional anisotropy
(FA). New statistical methods are needed for analyzing vector
and tensor valued imaging data. A statistical model is proposed
for the principal eigenvector of the diffusion tensor based on
the bipolar Watson distribution. Methods are presented for
computing mean direction and dispersion of a sample of direc-
tions and for testing whether two samples of directions (e.g.,
same voxel across two groups of subjects) have the same
mean. False discovery rate theory is used to identify voxels for
which the two-sample test is significant. These methods are
illustrated in a DTI data set collected to study reading ability. It
is shown that comparison of directions reveals differences in
gross anatomic structure that are invisible to FA. Magn Reson
Med 53:1423-1431, 2005. © 2005 Wiley-Liss, Inc.
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Diffusion tensor imaging (DTI) is a relatively new ana-
tomic imaging technique that measures the diffusion of
water molecules in tissue (1—4). The pattern of diffusion is
an indicator of the microscopic properties of the measured
tissue. In the brain, DTI reveals structure within the white
matter that is unavailable in other imaging methods. For
example, major white matter fiber tracts can be identified and
measured in an individual subject (5). Further, certain as-
pects of the health of these white matter tracks can be mea-
sured, e.g., detecting demyelination in multiple sclerosis (6).

DTI data differ fundamentally from conventional imag-
ing data in that values at each voxel are not scalars but 3 X
3 positive definite matrices, also called diffusion tensors.
The diffusion tensor is in essence the covariance matrix of
a 3D Gaussian distribution that models the Brownian mo-
tion of the water molecules within a voxel. Three impor-
tant tissue properties can be derived from the tensors:
isotropic diffusion coefficient (i.e., trace), fractional anisot-
ropy (FA), and principal diffusion direction. The isotropic
diffusion coefficient expresses an overall effect of diffu-
sion magnitude and is useful for characterizing diseased
tissue (6). FA is a normalized SD of the tensor eigenvalues
and reflects the degree of anisotropy within a voxel; high
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FA values suggest the presence of highly directional dif-
fusion such as that seen in white matter fiber tracts (2). The
principal diffusion direction is the eigenvector corre-
sponding to the largest eigenvalue of the tensor. It is gen-
erally assumed that diffusion is restricted in the direction
perpendicular to the nerve fibers, and so the principal
diffusion direction provides an estimation of the fiber di-
rection within the voxel (for a review, see (3)).

Frequently, investigators restrict their analysis of DTI
data to scalar quantities such as FA and trace (e.g., (6—8)).
The main reason for proceeding in this manner is that
statistical methods in the imaging field have been devel-
oped largely for scalar data. In DTI, such scalar summaries
do not capture all the information available in the data. In
particular, tensors might be oriented differently and yet
have the same set of eigenvalues and thus the same trace
and FA. Given the limitations of scalar summaries, new
statistical methods are needed for analyzing vector and
tensor valued imaging data.

In this article we introduce a method that is aimed at
detecting statistical differences in fiber orientation between
groups of subjects. In order to characterize the variability in
fiber orientation across subjects, we propose a statistical
model for the principal diffusion direction based on the
bipolar Watson distribution (9). We chose this distribution
because it is one of the simplest distributions on the unit
sphere that possesses the property of being antipodally sym-
metric, giving to each direction and its negative the same
probability. This is crucial because the diffusion tensor is
invariant under sign changes of the principal eigenvector.
We describe how to compute mean direction and dispersion
of a sample of directions and present a test of whether two (or
more) samples of directions have the same mean.

Given two groups of DTI images, the basic approach
consists of two steps: (1) Consider each voxel to contain
two groups of diffusion directions and apply the two-
sample test to each voxel. (2) Identify voxels for which the
test is significant. Here we use false discovery rate (FDR)
theory to solve the detection task in step 2. FDR is some-
times used in brain imaging as an alternative to Gaussian
random field theory for overcoming the multiple compar-
isons problem (10).

We illustrate these methods using the data set used in
Ref. (8). In that study, certain FA differences were found
between children with normal and poor reading abilities
in a particular region of interest. We show that the pro-
posed method reveals differences in gross anatomic struc-
ture that are invisible to statistical tests of FA.

THEORY AND METHODS
The Bipolar Watson Distribution

In DTI, the diffusion directions are not vectors but axes in
the sense that the tensor eigenvectors x and —x are indis-
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tinguishable. It is thus appropriate to consider probability
density functions that are antipodally symmetric. That is,
if x is a random unit vector in R®, we require that f{x) =
fl—x). We use the notation *x to represent an observed
random vector with unit length but undefined sign. One of
the simplest models with this property is the bipolar
Watson distribution, originally developed by G. S. Watson
from Johns Hopkins University in 1960 (and indepen-
dently by Dimroth and Sheidegger at about the same time)
to solve a problem concerning the folding of a layer of
rock. The bipolar Watson density is given by Ref. (9) as

A= x3m,k) = C(k) expl(k(nx)?) [1]

= C(x) exp(x cos* 0), [2]
where p is a unit vector called the mean direction and « is
a positive constant called the concentration parameter.
The alternative expression in Eq. [2] uses cos 6 = u"x, the
inner product of p and x, with 6 being the angle between
them. The density has maxima at =p and becomes more
concentrated around *p as « increases (Fig. 1). Notice that
the density is rotationally invariant around *p. The con-
stant C(k) ensures that the density integrates to 1 over the
sphere. Computation of the normalizing constant is not
necessary for the practical implementation of the compar-
ison methods described here. It is included in the Appen-
dix for completeness.

Mean Direction and Dispersion

Let =x,,... ,=X5 be a collection of observed principal
eigenvectors from a single voxel for each of N subjects, or
more generally, a collection of N unsigned random unit
vectors. Because of the antipodal symmetry, these coordi-
nates determine 2N points on the sphere, where each of
the N pairs contains diametrically opposite coordinates.
As a result, direct average of all 2N points is zero. On the
other hand, if a sign is arbitrarily chosen for each direc-
tion, the direct average of the N signed directions depends
on the signs chosen and thus is not unique.

An alternative way to define a measure of location for
the sample together with a measure of dispersion is
through the maximum likelihood estimators of the param-
eters w and k from the Watson distribution, as follows.
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FIG. 1. The bipolar Watson density on the sphere
fork = 1 (@) and k = 5 (b).

Consider the data matrix X obtained by arranging the vec-
tors as columns, i.e., X = (x; ... X,). Define the scatter
matrix S as

1
T _ T
xx; = XX, [3]
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which may be interpreted as the empiric covariance of the
points determined by x,,. . ., X,y on the sphere. Notice that
this definition is sign invariant. The sample mean direc-
tion X is defined as the principal eigenvector of the matrix
S, or the eigenvector that corresponds to the largest eigen-
value. The intuitive rationale behind this definition is that
if the points on the sphere have a preferential direction
then, as a group, they are also further apart in space from
their antipodes. The principal eigenvector of the scatter
matrix points in the direction of maximal variance in
space, which is the preferential direction for the points on
the sphere. We show in the Appendix that X is formally the
maximum likelihood estimator of the location parameter
in the Watson model.

If we denote the greatest eigenvalue of S by v, then the
quantity s = 1 — +, which we call the sample dispersion,
gives a measure of how disperse the sample is about the
mean. Intuitively, when the sample is concentrated
around the mean, the antipodes are far apart as a group and
so the spatial variance vy is close to 1, giving a dispersion s
that is close to 0. On the other extreme, when the sample
is scattered uniformly on the sphere, all three eigenvalues
are the same and equal to 1/3 (since their sum is equal to
trace(S) = 1). The dispersion s in that case takes its max-
imum value of 2/3.

We show in the Appendix that s is formally the maxi-
mum likelihood estimate of 1/k in the Watson model,
asymptotically when k — . Since k controls concentra-
tion, this connection justifies the interpretation of s as a
measure of dispersion. It is also shown in the Appendix
that s is the average sine-squared of the angles the samples
make with the mean direction, and therefore an interpre-
tation of s in units of angle is obtained by computing the
quantity sin~ *(V/s), which we call the angle dispersion of
the sample. Notice that this definition results in a maximal
angle dispersion of sin™ '(V2/3) = 54.74° in the case of
uniformity.
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It is worth mentioning that the quantities X and s, de-
spite having been derived from the Watson model, are
descriptive statistics that may be computed for any collec-
tion of directions regardless of the underlying distribution.
This is analogous to the regular sample mean and variance
being generic measures of location and dispersion in scalar
data regardless of whether the underlying distribution is
Gaussian.

A Two-Sample Test for Directions

Here we address the problem of testing whether two col-
lections of directions have the same mean direction. Con-
sider two collections of directions of sizes N, and N,, with
respective sample dispersions s, and s,. Under the null
hypothesis Hy: i, = p,, they can be viewed as one single
collection of size N = N, + N, and corresponding sample
dispersion s. Similar to an analysis of variance, the total
dispersion Ns is decomposed as

Ns = (N;s; + N,s,) + (Ns — N;s; — N,s,),

where the first term in parentheses is the total intragroup
dispersion and the second term corresponds to the inter-
group dispersion.

The test statistic F is then defined as the ratio of the
intergroup to the intragroup dispersion divided by the
appropriate number of degrees of freedom, 2 for the inter-
group term and 2(N — 2) for the intragroup term:

_ (N = 2) (Ns — N;s; — N,s,)
F= (N;s; + N,s,) ' [4]

The null hypothesis for this test is Hy: u, = w,. If the
underlying parameter « is the same in both samples, then
the test statistic F in Eq. [4] is F-distributed with 2 and
2(N — 2) degrees of freedom, asymptotically as k — .
Because of the asymptotic assumptions, this is called a
high concentration test rather than a large sample test.
This means that the test is valid for small sample sizes as
long as the group dispersions are low. The Appendix gives
a proof of the null distribution of the test statistic and
treats the more general case of testing equality of means in
a number of samples possibly greater than 2.

False Discovery Rates

The previous two-sample test applies to a single voxel. We
overcome the multiple comparisons problem in a region of
interest by controlling the FDR, or the proportion of false
positives among the rejected voxels. The FDR concept was
first introduced by Benjamini and Hochberg from Tel Aviv
University in 1995 (11) and has quickly made its way into
brain imaging (10). As an alternative to the FDR-control-
ling procedure described in those sources, we use an
equivalent interpretation of the procedure taken from Ref.
(12), as follows.

Let T be a test statistic connected to a one-sided test that
rejects the null hypothesis at voxel v if the value of the test
statistic T, at voxel v is large. In our case, T is the statistic
F from Eq. [4], but the following description applies more
generally. For a given region of interest M and a threshold
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t, consider the actual number of voxels that have values of
the test statistic above t and, on the other hand, the number
of voxels that would have had values of the test statistic
above t if the null hypothesis were true in the entire
region. Then the ratio of these two quantities is an estimate
of the FDR. Dividing both numerator and denominator by
the total number of voxels in M, the FDR at threshold ¢ is
expressed in terms of probabilities as

Py (T, = thve M)
FDRW = 51 = e My [5]
where P denotes a probability computed from the empiric
distribution of the test statistic and P, a probability com-
puted from the exact distribution of the test statistic ac-
cording to the null hypothesis H,. In other words, the FDR
is the ratio of the tail areas under the null density and the
empiric density, respectively. Notice that this formula as-
sumes that the null distribution of the test statistic is the
same in all voxels.

Voxels for which true differences exist between the
groups tend to have higher values of the test statistic than
expected according to the null hypothesis. As a result,
FDR(?) tends to decrease as t increases. In order to identify
significant voxels, the FDR is computed for a range of
values of t and the required threshold is selected as the
lowest t for which the FDR is smaller or equal to the
desired control level.

In comparison with the Benjamini and Hochberg proce-
dure, the approach described above allows interpretation
of the threshold in terms of the distribution of the data, a
useful guide for the analyst. In addition, it avoids the task
of sorting the P values, which is an advantage when the
number of voxels in the region of interest is large.

Comparison of Direction Maps

The tools described above provide a solution to the prob-
lem of finding localized differences in fiber orientation
between two groups of subjects. For a given set of DTI
images, spatially normalized to a common template, the
statistical methodology may be summarized as follows:

1. Select a region of interest.

2. At each voxel, replace the diffusion tensor by the
quantity to compare, e.g., FA or principal direction.

3. Compute the value of the test statistic at each voxel
across subjects. For FA, use the traditional t-statistic; for
principal direction, use the statistic given by Eq. [4].

4. Estimate the FDR curve FDR(?) in the region of interest
for a range of values of t.

5. Choose a threshold ¢ that results in an FDR smaller or
equal to the desired level.

6. Select voxels whose value of the test statistic is above
the threshold. These are the significant voxels.

DATA EXAMPLE

In order to assess the practicality and usefulness of this
approach, we applied this methodology to the data set
used in Ref. (8). This study investigated anatomic differ-
ences related to reading development. The data set con-
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sisted of 14 DTI maps from children, of whom 7 were poor
readers and 7 and were normal readers. Two subjects were
removed from the analysis because the spatial registration
to the template brain failed, leaving N = 12 DTI maps, 6 in
each group.

The imaging methods involving human data were ap-
proved by the Stanford Institutional Review Board and
conformed to institutional policies and US Federal law.
Images were acquired on GE 1.5-T Signa LX. The DTI
protocol involved four 3-min whole-brain scans that were
averaged. The pulse sequence was a diffusion-weighted
single-shot spin-echo, echo planar imaging sequence
(TE = 63 ms; TR = 12 s; FOV = 260 mm with 128 X 128
matrix, voxel size = 2 X 2 mm, bandwidth = =110 kHz,
partial k-space acquisition). Thirty-eight axial, 3-mm-thick
slices (no skip) were measured for two b values, b = 0 and
b = 800 s/mm? (4).

Diffusion tensor maps were spatially normalized to the
MNI EPI template as follows. First, linear and nonlinear
transformation parameters were computed using the scalar
T,-weighted (b = 0) images using SPM99 (Wellcome De-
partment of Cognitive Neurology, London, UK) (13,14).
Both the linear and the nonlinear transformations were
applied to the original sampling grid and the tensors were
resampled in the new grid using a spline-based tensor
interpolation algorithm (15). The tensors were then reori-
ented by means of the preservation of principal direction
(PPD) algorithm described in Ref. (16), using the linear
(affine) transformation.

Group differences were restricted to the intersection of
white matter regions common to all the spatially normal-
ized brains. These regions were determined by applying a
Bayesian segmentation algorithm based on each subject’s
T,-weighted (b = 0) image (17) and then thresholding the
probability of a voxel belonging to the white matter at 0.8.

RESULTS

The intersection of white matter regions yielded a region
of interest with a total of 9203 voxels. A histogram of the F'
statistics computed in these voxels is shown in Fig. 2a.
Superimposed is the F density with 2 and 2(N — 2) = 20
degrees of freedom. The apparent agreement between the
curve and the histogram is first evidence that the Watson
model is a good approximation to the distribution of prin-
cipal directions across subjects within each voxel. Because
of spatial normalization, most voxels correspond to the
same anatomic structure across subjects and therefore the
null hypothesis that there are no differences in direction
holds in those voxels. Many other voxels, however, do not
conform to the null hypothesis. The departure from the
null density is more clearly seen in the quantile—quantile
(Q-Q) plot of Fig. 2b. The agreement between the quantiles
is good up to about F = 3, which accounts for about 93%
of the voxels. The vertical dashed line corresponds to the
threshold found in the FDR analysis described below, and
so the selected voxels are the cases that lie to the right of
this line.

The FDR analysis is summarized in Fig. 2c, which
shows a plot of the estimated FDR as a function of thresh-
old, computed from the histogram in Fig. 2a according to
Eq. [5]. Notice that the FDR estimate has a general ten-
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FIG. 2. (a) Histogram of the F statistic against the null density. (b)
Q-Q plot of the F statistic against null quantiles. (c) Estimates of
FDR as a function of threshold.

dency to decrease for larger values of the test statistic. The
lack of monotonicity is due to the discontinuous nature of
the histogram. By selecting an FDR of 0.2 we obtain a
threshold of 11.25, marked in the figure as a vertical
dashed segment. As a reference, this threshold corre-
sponds to an uncorrected P value of 5.3 X 10~ %

Of the total number of voxels in the region of interest, 21
voxels were found to have values of the F statistic larger
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FIG. 3. Significant voxels at slices z =
23 mm (a), 25 mm (b), and 27 mm (c).

than the threshold. Although these selected voxels are
located in several areas of the white matter, it is in slices
z = 23 mm to z = 25 mm above the anterior commisure
(MNI coordinates) that they are closer together and have
the highest values of the F statistic. These three slices are
shown in Fig. 3, with the corresponding subset of 8 voxels
marked in red. The group difference in this region can also
be seen as a local maximum in the F statistic map of Fig.
4a. As a reference, Fig. 4b shows a map of the pooled angle
dispersions for all 12 subjects. In this slice, the largest F
statistic is 14.90, which corresponds to an uncorrected P
value of 1.1 X 10~ %

Inspection of the original data helps explain the results
in terms of anatomy. Figure 5 shows the mean principal
directions of both groups at slice z = 23 mm. Color is used
here to indicate coordinate directions, with blue corre-
sponding to up—down, red to right-left, and green to an-

1427

terior—posterior. The figure was constructed by taking the
absolute value of the coordinates of each mean direction
and mapping each coordinate to a scale in the correspond-
ing color. Mixed colors represent directions that are
oblique to the coordinate axes. Notice that the anterior
region of the left hemisphere shows indeed different fiber
orientations between the two groups. In particular, the
largest angle difference among the selected voxels is 46.1°.
Closer inspection reveals that angle differences as large as
88.9° exist in neighboring voxels. These voxels were not
selected because the dispersion in these voxels was too
high, resulting in a lower value of the test statistic.

For comparison, a similar FDR analysis was performed
using FA as the criterion for comparison rather than prin-
cipal direction. The methodology used followed the de-
scription under Comparison of Direction Maps, with the
only exception that the standard ¢ statistic was used as a

FIG. 4. The F statistic (a) and angle dispersion
(degrees) of the principal direction (b) at slice z =
23 mm.

FIG. 5. Mean direction for control group (a) and
dyslexic group (b) at slice z = 23 mm.
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test statistic instead, given the scalar nature of the FA
maps. Figures 6 and 7 show the FA maps and t statistic
maps at the same slice as Figs. 4 and 5. Here the difference
has been taken as control minus dyslexic. Not only are
there no striking differences between the two groups, but
also the region that was identified as being different using
principal directions has very similar values of FA. An FDR
analysis at the 0.2 level yielded no significant voxels.

DISCUSSION

The results described above can be interpreted in terms of
brain anatomy. Referring to Fig. 5, the bright blue region in
both hemispheres indicates the strong vertical direction-
ality of the corona radiata, while the red anterior areas in
the control group indicate the frontal projections of the
corpus callosum, composed of laterally oriented fibers. In
the dislexic group, that same area contains vertical rather
than lateral fibers. This implies that the corona radiata
extends more anteriorly in the dyslexic group than in the
control group. The effect is more pronounced in the left
hemisphere but it is also present in the right hemisphere,
as indicated in Fig. 3c. This finding may relate to gross
white matter differences between good and poor readers
found in previous anatomic studies (e.g., (18)). Both the
corona radiata and the corpus callosum are structures that
possess medium to high FA values, which is why no
differences in FA were observed. This is a perfect example
of the importance of using directional information for an-
alyzing DTI data.

The use of the F (2,20) density as null stems from the
assumption that the principal directions are highly con-

FIG. 7. The t test statistic (a) and pooled SD of FA
(b) at slice z = 23 mm.
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—o0s FIG.6. Mean FA for control group (a) and dyslexic
group (b) at slice z = 23 mm.
{08
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0.2

centrated within each voxel for both populations. In order
to determine the dependence of the results on the high-
concentration assumption, we computed the null distribu-
tion for the test statistic F using Monte Carlo simulation for
various values of the concentration parameter k. The sim-
ulations showed that the distributions approached the F
(2,20) distributions quickly as k increased. For instance,
for a marginal P value of 0.001, the corresponding thresh-
olds were 8.5 for k = 5 and 9.4 for k = 10, compared to 9.9
for the F (2,20) distribution. The values k = 5 and k = 9.84
are the 25th and 50th percentiles of the distribution of k
among all 9203 voxels, so we may conclude the high
concentration assumption indeed holds for most voxels.
Figure 4b shows that high concentration regions tend to
coincide with highly coherent anatomic regions, such as
the corona radiata. For reference, k = 5 and k = 10 corre-
spond to angle deviations of 29° and 19°, respectively.
Notice that the threshold obtained from the F (2,20) distri-
bution is higher than it would be if the true concentration
were used instead, thus biasing the test toward selecting
fewer voxels.

There is no universally agreed notion of power in the
multiple comparisons literature. As a guideline, we con-
sider the power at a single voxel, using the observed peak
separation of 46.1° as the effect size. We used Monte Carlo
simulation to compute the density of the test statistic
under this alternative hypothesis and found that the power
of a single test of the F (2,20) null at level « = 0.001 was
0.180 for k = 5 and 0.804 for k = 10. The lack of power at
low concentrations may explain why so few voxels were
rejected in the FDR analysis, in addition to the threshold
bias mentioned previously. The procedure can be adapted

101
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to low «k by computing the appropriate null density as
described above.

For the selected threshold providing an FDR of 0.2, we
expect 1 of every 5 significant voxels to be false positives.
This is perhaps higher than desired as a compelling level
of significance. Setting the FDR level at 0.1 would result in
a threshold of 13.62. In this case 10 voxels would be
rejected, but 5 of them would still be in the anterior region
discussed above. It is this consistency and the proximity of
the selected voxels to each other that suggest that the effect
is real. Other significant voxels exist (see Fig. 3), but their
being isolated makes it more likely that they are due to
random fluctuations. Their proximity to the borders of the
mask suggests that they might also be the result of small
misalignments in the normalization process.

An inherent limitation of the procedure is that it does
not take into account the relationship between neighbor-
ing voxels. Important differences in anatomic structure
between groups would most likely involve many contigu-
ous voxels simultaneously. Because of its simplicity, it is a
great advantage of the FDR procedure that the dependency
between voxels can be ignored, but at the same time this is
valuable information that is not being used.

Another important issue to consider is that the method
described in this paper depends heavily on having reliable
normalization. A voxel by voxel comparison is only pos-
sible if voxels can be assumed to represent the same ana-
tomic region in every subject. In addition, an inference
about fiber directions is only valid if the normalization
process does not introduce or remove the effects we are
after. In this paper we have used current state-of-the-art
normalization methods (SPM parameters in conjunction
with the PPD algorithm). However, additional research is
necessary to determine the effect of normalization on the
inference process.

Having methods for comparing FA and principal direc-
tion across populations, the question remains of whether
important information in the tensor data exists that is not
captured by these two quantities. The diffusion tensor has
6 degrees of freedom. Geometrically, these can be ex-
pressed as 3 eigenvalues, corresponding to axis lengths of
the associated ellipsoid, and 3 angles, corresponding to the
orientation of the orthogonal frame of the ellipsoid. Fixing
FA and trace establish one constraint each on the eigen-
values, while fixing the principal direction determines two
of the angles. Together, these quantities account for 4
degrees of freedom. The remaining 2 degrees of freedom
correspond to the angle that determines the direction of
the second eigenvector and an additional constraint on the
eigenvalues related to their relative ratios. These last 2
degrees of freedom would then relate to the oblateness of
the ellipsoid and the orientation of the principal plane of
the ellipsoid. Considering that mean diffusivity is gener-
ally uniform over healthy brains, it is possible that FA and
principal direction are enough to describe most interesting
aspects of DTI data as far as gross anatomy is concerned.
Girdle distributions might be necessary, however, to de-
scribe variability among subjects in locations in which
oblate tensors tend to be found, such as fiber crossings.
These are questions for future research.
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CONCLUSIONS

We have shown that DTI principal directions provide in-
sight into differences in anatomic structure between pop-
ulations that may be invisible to statistical tests of FA. As
presented in this paper, a formal methodology for compar-
ison of principal directions exists based on the Watson
model and false discovery rate theory.

APPENDIX

Computations for the Bipolar Watson Distribution

The following summary simplifies the language used in
Ref. (9) (pp. 181, 202, 236—240), with understanding aided
by the expositions in Refs. (19) and (20).

Integration Constant

Define a spherical coordinate system on the unit sphere so
that the z axis coincides with the vector n. Then Eq. [2] is
the expression of the Watson density in this coordinate
system, where 6 is the co-latitude angle between x and the
z axes. Denote the longitude angle by ¢. Integrating the
density over the sphere we get

2m w2 1
1= J dcpf C(k)e* " sin § = ZﬂC(K]J e’ dt
0 0 0

and so

1 -1
21 J e dt| .
0

We are particularly interested in the large concentration
case. When « is large, most of the probability density is
concentrated around p and x is close to p with high prob-
ability. Using

Ck) =

1
x'w=1 - x —pf > W ~1 - |x—pf (6]

the Watson density given by Eq. [2] may be approximated
by

A= x31,k) = C(k) exp(k(p™x)?) =~ Ck)e* - exp(— k|x — p|?).
[7]

The region of the sphere close to p looks locally like a 2D
plane, and so Eq. [7] is a bivariate normal density with
mean p and covariance 1/2x times the 2 X 2 identity
matrix. By equating the multiplying constant with that of
the corresponding normal density we obtain an approxi-
mation for C(k) given by

o K=, (8]

me

1
Clkle” ~ 5 /2 = C) ~
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Maximum Likelihood Estimates

Let =x,,...,%=X, be an independent random sample from
the Watson distribution. The log-likelihood function is

N

I(w,k; * X4pe .0, £ X)) = K E(pLTxi]Z + Nlog C(k)

i=1

= NlkpTSp + log C(x)], [9]

where S is the scatter matrix given by Eq. [3]. For k > 0, the
maximizer i is the solution to

max{pn’Su} st pTu=1,

n

which is given by the eigenvector of S that corresponds to
the maximum eigenvalue y. At the maximum,

AISR = plyi = v. [10]

Differentiation of Eq.
0TSj = A(k), where

[9] with respect to k gives

Alk) = — o0 = [11]
f e dt
0
and & is thus found by solving
AR) = . [12]

The function A(k) is monotonically increasing in the range
[1/3,1) as k increases from 0 to . Replacing Eq. [8] in Eq.
[11] we obtain the large concentration approximation

K —> 0,

A 1
(k) ~1 <

By setting the dispersion s = 1 — v in Eq. [12] and using
the previous approximation for A(k) we get that at the
point of maximum likelihood s ~ 1/k , which justifies the
interpretation of s as a measure of dispersion.

We now obtain an interpretation of s in terms of angle
units. Replacing Eq. [3] in Eq. [10] we get

1 N

z,(ffx,-) B5%)" =5 2

i=1

y=1'Si = cos” b,

zl=

and so

1 N
s=1-vy== dsin® ¥,
Ni:1

Schwartzman et al.

In other words, s is the average sine-squared of the angles
with respect to the mean direction. An interpretation of s
in units of angle is obtained thus by computing the quan-
tity sin~ *(V/s), which we call the angle dispersion.

A Multisample Large Concentration Test

Given q samples of sizes N,,... ,N,, we wish to test H:
T, =...= *p, against the alternative that at least one of
the means is different. For simplicity, we assume that all
samples have the same unknown concentration k.

Consider first the entire sample of size N= N, +. .. +N,,
with common mean p under the null hypothesis and
pooled dispersion s. Putting s = 1 — v, Egs. [10] and [6]
give

2kNs = 2kN(1 — 3S[)

N N

=2k[N— > (W)l = > 2k|x; — pf>.

i=1 i=1

When p is known, 2kNs is the sum of N independent
approximately x5 random variables. The estimation of p
reduces 2 degrees of freedom. Thus, under H,, 2kNs is
approximately distributed as x* with 2(N — 1) degrees of
freedom, which we write as

zKstﬁ-u.Xg[N,l). [13]

For g independent samples of sizes N,,. .. ,N, and disper-
sions s,,. .. ,s,, 2q parameters are fitted and we have the
intragroup sum of squares

q
2k, Njsj £ X - g [14]

j=0

In the “analysis of variance” decomposition

s

j=0 j=0

q q
2kNs = 2k EN,S, + 2K|:NS - E Njs;

the asymptotics Egs. [13] and [14] imply that the second
term on the RHS is approximately x* with 2(N — 1) —
2(N — q) = 2(q — 1) degrees of freedom and approximately
independent of the first term. The second term represents
the intergroup dispersion. Proceeding as in the analysis of
variance for normal variables, we construct the test statis-
tic F as the ratio between the intergroup and the intragroup
terms divided by the appropriate number of degrees of
freedom. Correspondingly, the test statistic is asymptoti-
cally F-distributed as

B [Ns — 29 _ (Ns;l/2(qg — 1)
~ [S9LNsl2(N - g

iy Felg -2 - g
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