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Abstract-- In this paper, we argue that biological 
vision and electronic image acquisition share 
common principles despite their vastly different 
implementations. These shared principles are 
based on the need to acquire and a common set of 
input stimuli as well as the need to generalize from 
the acquired images.  Two related principles are 
discussed in detail, namely multiple parallel image 
representations and the use of dedicated local 
memory in various stages of acquisition and 
processing. We review relevant literature in visual 
neuroscience and image systems engineering to 
support our argument. Particularly, the paper 
discusses multiple capture image acquisition, with 
applications such as dynamic range, field-of-view 
or depth-of-field extension. Finally, as an example, 
a novel multiple-capture-single-image CMOS 
sensor is presented.  This sensor has been 
developed at Stanford and it illustrates both 
principles that, we believe, are shared among 
biological vision and image acquisition. 
 

Index Terms-- image sensor, image acquisition, 
multiple capture, multiple representations, image 
mosaicking, image registration, CMOS sensor, 
dynamic range, digital camera, memory 
architecture, visual pathways, human vision, 

I. INTRODUCTION 
 
Certain relationships between image systems 
engineering and visual neuroscience are well 
established.  For example, it is conventional to 
find common ground between biological vision 
and the technical systems for image analysis or 

image quality evaluation.  But, it is less obvious 
that biological vision shares common principles 
with image acquisition systems used for image 
reproduction.  In the first part of the paper, we 
explain why these two types of systems are 
conceptually coupled and we describe a principle 
that we believe is basic to both fields.  We argue 
that multiple image representations, a 
fundamental principle of visual neuroscience, 
can be applied to image acquisition systems.  
Then we argue that local memory, a critical 
component in the design of electronic imaging 
systems with multiple representations, should 
also be considered as part of this architecture 
when analyzing the function of neurons in the 
visual pathways. 
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In the second part of the paper, we point out the 
connection between the ideas presented here and 
various image systems engineering and computer 
graphics applications.  We describe a collection 
of applications that uses multiple image captures 
to render a single image. The success of multiple 
capture image acquisition applications provides 
further support for the generality of the ideas and 
the conceptual relationship between the 
biological and engineering systems. 
 
In the third part of the paper, we describe an 
electronic imaging system that operates using 
these two principles.  Specifically, we describe a 
multiple capture single image (MCSI) imaging 
architecture [1].  At the core of this architecture 
is a digital pixel sensor (DPS), a new image 
sensor architecture that performs multiple non-
destructive image readouts within a normal 
exposure time.  Processing circuits that combine 
computational and memory functions are 
fundamental to this architecture. Some lessons 
we have learned from engineering a multiple 
image representations system might benefit 
visual neuroscientists who seek to understand 
neural function.  
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II. IMAGING PRINCIPLES 
 
Image reproduction is the largest application of 
electronic imaging acquisition systems. 
Biological systems, however, do not reproduce 
images: They interpret images.  At first, then, it 
may appear that biological systems are not good 
models for the design of image acquisition and 
reproduction systems.   
 
We believe, however, that there is a strong 
relationship between biological vision and 
electronic systems for image reproduction.  
There are two areas of commonality.  First, 
biological vision and engineered image systems 
generally work with common input data: natural 
images. Hence, the two types of systems are 
linked by the need to work across the range of 
constraints imposed by natural images [2].  
Natural image data span a particular dynamic 
range, have certain characteristic space-time 
correlations, and contain various typical types of 
motion.  Encoding the image data accurately is a 
necessary step for both image analysis and image 
reproduction.  The properties of natural images 
set common constraints on the encoding and 
representation of images in biological and 
engineering systems. 
 
There is a second, equally important, source of 
commonality. Vision scientists since Helmholtz 
have argued that human visual perception is best 
understood as an explanation of the physical 
causes of the retinal image [3-5].  By interpreting 
the retinal images, and not just storing them, 
biological systems are prepared to generalize 
from a particular viewpoint, ambient lighting, 
size, or distance of a specific image.   
 
The ability to generalize from acquired data is an 
important capability for image reproduction 
systems as well. Image reproduction systems 
rarely render a precise replica of the original.  
The reproduction is usually smaller, seen from a 
different perspective, and viewed in a different 
context than the original.  Reproduction systems 
create images that are generalizations of the 
original image data; they do not replicate the 
image data.   
 
Once we recognize that the acquired image data 
are used to reproduce a generalized view of the 
original, the connection between image 
reproduction and image interpretation becomes 
clear: The image reproduction process will be 
more successful if we interpret the original and 

apply appropriate transformations. For example, 
interpreting the shape of an original object can 
improve subsequent renderings from different 
perspectives; illumination estimation can 
improve color rendering; measuring motion can 
remove motion blur. In general, imaging systems 
that can interpret the original image data will 
have better image reproduction capabilities. 
 
Our emphasis on the importance of image 
interpretation is an extension of current practice; 
modern electronic imaging systems already 
include control systems that make certain 
inferences about the scene.  Exposure value 
systems analyze image intensity; white balance 
systems analyze the color distribution in the 
image; focus systems measure the distance to a 
principal object.  We believe that electronic 
imaging systems of the future will derive and 
encode much more information about the 
physical characteristics of the scene.  Elsewhere 
we have argued that these capabilities can be 
implemented and that doing so might prove to be 
much more important than simply adding to the 
spatial resolution of the digital sensor or simply 
integrating parts onto the sensor [6].  The ability 
to estimate the three-dimensional spatial 
geometry of the objects, illumination direction, 
specularity, occlusion, and the properties of 
moving objects, will provide information that 
can radically change the capabilities of the image 
reproduction system. 
 
We begin, then, with the premise that biological 
and image reproduction share constraints based 
on the input data and  the added value to both for 
incorporating    image interpretation.  But, what 
specific computational elements might link the 
processing in biological and electronic systems?  
We describe two principles, multiple 
representations and local memory, which we 
believe are shared by the visual pathways and 
electronic reproduction system design.  We do 
not mean to imply that this is a complete list; 
indeed, we are certain that over time many other 
ideas will emerge. 

A. Multiple Image Representations 
 
On the one hand, it is obvious that the visual 
system makes multiple captures of a scene and 
renders but a single perceptual experience:  We 
have two eyes.  It is surprising to learn, however, 
this is but one of many examples in which the 
visual pathways create multiple representations: 
Each retina includes multiple mosaics of neurons 
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that separately represent the visual field.  For 
example, image transduction uses two systems of 
photoreceptors:  the rods and cones.  Each 
system comprises a separate sampling mosaic of 
the retinal image.  The rods encode the data for a 
system with low spatial resolution but high 
quantum efficiency.  The cones encode the 
image data at much higher spatial resolution and 
lower quantum efficiency.   
 
The rods and cones generally operate under 
different viewing conditions.  But there are also 
many cases in which multiple representations of 
the image are obtained under a single viewing 
condition.  For example, the cones can be 
subdivided into three sampling mosaics that 
expand the spectral encoding.  The three cone 
mosaics also differ in their spatial sampling 
properties.  . 
 

The use of multiple field representations does 
not end with the photoreceptors.  In fact, the 
number of visual field representations increases 
at the next layer of neurons.  Each foveal cone is 
contacted at roughly 250 synaptic sites by post-
receptoral neurons. These contacts arise from 8-
10 different types of post-synaptic neurons; each 
type of neuron forms part of a mosaic of similar 
neurons that represent the entire visual field [10, 
11]. Hence, the three cone mosaics are 
transformed into a larger set of neural mosaics 
within the retina.  
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Figure 1. The right hemisphere of a human 
brain seen in sagittal view.  The rendered 
surface is the boundary between the white 
matter and gray matter surface.  The 
boundary between the white and gray 
matter was measured using custom software 
(http://white.stanford.edu/mri/unfoldSegmen
t.htm) The color overlays in the posterior 
portion of the brain (occipital lobe) show the 
positions of several different visual areas.  
These areas are determined from 
measurements of activity in the human brain 
using functional magnetic resonance imaging 
([7]). The signals from the retina and lateral 
geniculate are sent to primary visual cortex 
(V1).  Areas V2 and V3 surround this region.  
Several other visual areas (not shown) can be 
measured on the dorsal and ventral surface 
of the occipital lobe ([8, 9]). 

 
Among the best known mosaics is the one 
initiated by the midget cells of the retina that 
then projects to the parvocellular layers of the 
lateral geniculate nucleus and finally to layer 
4Cb of the first cortical area (V1). The midget 
cell mosaic samples the entire visual field at very 
high resolution.  In the central region of the 
visual field, a single cone drives the signal from 
a midget bipolar, which in turn drives the center 
of the midget ganglion cell.  Because of their 
fine spatial sampling resolution, this mosaic is 
present in very high density.  In addition to the 
midget cells, there are about a dozen other 
known retinal ganglion cell mosaics and several 
of these also send their outputs to the lateral 
geniculate nucleus and then to V1. By using 
multiple mosaics of photoreceptors and neurons, 
the visual system expands its operating range, 
perhaps including additional measurements 
along a variety of image dimensions. 
 
In the last thirty years we have learned that the 
visual cortex, too, contains multiple distinct 
representations of visual information.  These 
representations take several forms, including 
multiple spatial maps of the visual field.  These 
distinct maps have been observed  using direct 
measurements of neural responses in animal 
brains [12, 13], and more recently using 
functional magnetic resonance imaging (fMRI) 
of activity in the human brain [7, 14].  Based on 
these maps and other experimental criteria, 
including single-unit receptive field properties, 
cell morphology, and anatomical connections, 
cortex can be subdivided in many distinct visual 
areas that separately encode the visual field 
appear to serve different computational functions 
[15]. 
 
Figure 1 illustrates the locations of several 
distinct visual areas in the right hemisphere of a 
human.  Each of the colored regions contains a 
map of the left half of the visual field; a 
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corresponding map of the right visual field is 
present in the analogous region in the left 
hemisphere.  These visual field maps represent 
one of the clearest examples, at a large spatial 
scale, of multiple spatial representations of the 
image. The surface area of these visual areas 
varies from 4-30 cm2.  Visual cortex in human 
ranges from 2-5 mm in thickness and there are 
approximately 105 neurons/mm3 [16].  Most 
remarkable, it is estimated that each cubic 
millimeter of cortex contains a length of 3 km of 
fibers that interconnect these neurons [17, 18]. 
Like the retina each cortical area further contains 
a multiplicity of cell types.  
 
Why should the visual pathways contain so 
many mosaics that encode the visual field?  One 
hypothesis is that each area  represents various 
perceptual features. Some visual areas are said to 
represent color, another motion and depth, 
another form, and so forth [9, 19-24]. Animal 
and human data lend modest support to this 
principle, however the association between 
visual areas and specific visual functions is far 
from proven. In fact, even the general form of 
this hypothesis, that visual areas should be 
organized by their role in representing 
consciously available perceptual features, is 
unproven. We suspect that over time many other 
hypotheses about the purpose of computations 
performed within different visual areas will 
emerge. 
 
A second hypothesis explaining the need for 
multiple representations is that each 
representation is designed to compute a 
specialized quantity.  For example, roughly thirty 
years ago, behavioral studies suggested that the 
visual pathways contain maps that code different 
spatial and temporal scales ([25-28]).  This has 
been an important theme in the human 
experimental literature ranging from relatively 
complex theories of brightness perception ([29]) 
to theories of pattern detection and 
discrimination ([30]). Some data suggest that 
orderly clusters of neurons within individual 
visual areas represent the multiple spatial 
resolutions [31-34]. The multiple spatial 
resolution architecture has proven to be very 
useful in digital imaging applications (e.g., [35]).  
For example, multiple scale representations are 
used in search algorithms; initial solutions are 
found at a coarse scale, and these solutions 
initiate the search at a finer scale ([36, 37]).  
Hence, both behavioral data and algorithmic 
efficacy support the value of multiple 

representations of different spatial and temporal 
scale. 
 
Behavioral data also suggest that the visual 
pathways contain several different temporal 
representations [38, 39].  One interesting 
demonstration of the relatively small number of 
temporal representations is this: human 
observers cannot discriminate between lights 
flickering at different rates.  In fact, lights 
flickering at temporal frequencies beyond 10Hz 
all appear to be flickering at the same rate [40, 
41].  While the flicker itself is very visible, the 
flicker rate is impossible to assess.  This 
observation suggests that the representation of 
temporal frequency is based on only a few 
sample measurements, just as the representation 
of wavelength is based on a few samples.  [42] 
Compared to the vast literature on spatial 
mechanisms [30], there is a modest amount of 
work on the neural basis of temporal 
mechanisms.  This asymmetry is surprising: The 
evidence for several temporal resolution maps is 
equal to that of multiple spatial resolutions, and 
the problem should be simpler because there 
appear to be only two or three different temporal 
representations.  The problem deserves further 
study because, as we explain below, sensor 
dynamic range can benefit greatly from multiple 
temporal representations. 
 
The visual pathways contain a large number of 
neural representations of the visual field..  These 
neural mosaics appear to be specialized for 
representing visual features or for localized 
computations within a portion of the visual field.  
These multiple representations appear to be a 
fundamental architectural feature and one that 
might well be exploited by image reproduction 
systems. 

B. Local Memory 
 
In this section, we suggest a principle related to 
multiple representations:  the use of local 
memory to assist computations and 
representations at many points within the 
imaging pathways.  In engineering applications, 
local memory is found in many forms.  
Registers, buffers that coordinate timing when 
input and output between different devices, and 
local memory to contain the results of 
intermediate calculations are all widespread.  In 
what follows, we consider the hypothesis that 
such local memory circuits will be found 
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distributed in the visual pathways, even at the 
earliest stages. 
 
The visual neuroscience literature contains many 
experiments that document the significance of a 
general-purpose short-term visual memory, 
sometimes called a visual scratchpad.  In the 
behavioral literature, for example, short-term 
visual store can be demonstrated using a very 
simple experiment [43-45].  Suppose a 3x3 array 
of letters is flashed for a few milliseconds, and 
the observer is asked to remember as many of the 
letters as possible.  If no further indication is 
given, the observer will remember 4-6 of the 9 
letters in the array, suggesting that about half of 
the letters were encoded. 
 
Now, suppose that a short time after presentation 
of the array, a tone is sounded.  The pitch of the 
tone (high, middle or low) indicates which row 
of letters (top, middle, or bottom) should be 
recalled.  Typically, the observer will name all 
three letters in that row correctly.  In this 
experiment, then, it appears as if the observer has 
encoded all the letters, not half. This 
phenomenon can be explained by positing that 
the letters are stored in a short-term memory; if 
the tone is presented while the letters are in this 
store, all of the letters can be retrieved.  But, if 
the observer tries to retrieve all of the letters, as 
in the first experiment, the memory trace fades 
during retrieval.  Hence, only half the letters can 
be recalled. In addition to these behavioral 
studies of short-term memory, others have 
provided evidence for the presence of short-term 
memory specific to some visual tasks [46] but 
not others [47]. A widespread assumption is that 
the visual scratchpad is located outside of 
primary sensory areas [48-50].   
 
In addition to the visual scratchpad, we urge 
consideration of the hypothesis that memory 
capabilities are distributed locally throughout 
visual cortex. At this point, we urge 
consideration of this point mainly based on the, 
practical design considerations that motivated us 
to design systems with memory located near the 
image sensor. In that work we found various 
uses for local memory.  For example, the  
availability of a small amount of per-pixel 
memory makes it possible to separate the timing 
demands imposed by image acquisition and 
image communication.  We will discuss the 
value of memory in the engineering design more 
fully later in this paper;  we pause here to 
consider what might be known about neurons 

that might be used to store local computational 
results within the visual pathways. 
 
To understand how local memory would fit with 
current thinking in visual neuroscience, it is 
worth considering the current view of 
computation and communication.  Perhaps a 
consensus description would be something like 
this:  Neural measurements of the image are 
continuously updated by peripheral neurons. 
These measurements are communicated to output 
cells by variations in the firing rate.  For 
example, simple retinal signals derive 
information about image contrast features that 
are highly localized space and time ; this 
information is continuously sent to cortical 
circuits that compute information spread over 
larger regions of space and time (local 
orientation; local motion); these results, in turn, 
are continuously sent to brain regions that 
analyze data spread across large amounts of 
space and time (object features).  
 
Local storage of information can be implemented 
by a variety of simple neural signals.  For 
example, neurons whose signals represent 
moving averages, each averaging over a different 
temporal periods, would serve as one type of 
memory.  If such signals are present, they can be 
compared with relatively recent signals, say 
comparing a signal averaged over the last 50 ms 
with one measured over the most recent 100 ms. 
The ability to make such comparisons are 
essential to motion analysis and other visual 
functions.   
 
For example, a persistent signal of a few hundred 
milliseconds can be of value in registering 
information from just before and after an eye 
movement. Also, longer integration times 
usually provide more accurate estimates of 
intensity or contrast, but only if the scene is 
static.  By storing a sequence of measurements in 
local memory, one can decide whether the long 
duration measurement reflects a high quality 
measurement of a static scene or merely 
measures the time average of a set of moving 
objects.  In this example, we use the array of 
signals to decide which is the most precise 
measurement of the image.  It is likely that an 
array of memory cells, each providing a measure 
of the scene over the last few hundred 
milliseconds, can be used to create various types 
of  context-sensitive algorithms that aid visual 
performance.  
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On this view, multiple representations and 
memory are closely linked.  One copy of the 
system performance measures a value close to 
the instantaneous stimulus-driven activity; a 
second value represents more about the recent 
time history of the response, either by having a 
longer integration period or other specific 
computations. The value of a computed signal 
derived from these separate representations is the 
output buffer, another type of system memory 
that caches the result. By separating this output 
from values driven continuously by the signal 
over time, the early sensory pathways can 
communicate a more reliable signal to other 
visual areas. This was among the reasons we use 
near-pixel memory in our imaging hardware.  
 
The properties of memory circuits for other 
cortical functions, such as motor control or 
decision mechanisms, have been analyzed and 
various biophysical mechanisms have been 
proposed and studied (see e.g. [51-53]).  It is also 
useful to consider the system-level 
characteristics that visual neural RAM (NRAM) 
circuits might possess.  Memory circuits should 
represent information accumulated over various 
time scales, not just the (near) instantaneous 
response to the signal itself.   The contents of the 
memory might reflect the result of some 
intelligent processing based on several 
measurements.  In the event of a substantial 
change in the imaging environment (eye 
movements; blinks), it should be possible to reset 
the memory and begin afresh. 
 
While there is not yet overwhelming evidence 
for local memory neurons within visual or other 
sensory areas, such as V1, there are some recent 
intriguing reports.  Neurons that appear to satisfy 
certain memory requirements have been reported 
widely across motor areas, including peripheral 
areas such as the spinal cord [54]. We note with 
particular interest that some neurons within area 
V1 mimic neighboring responses, as if they are 
representing the recent activity [55].  Local field 
potential measurements suggest that some 
neurons within V1 appear to have the 
characteristics needed for a short-term visual 
store [56].  Differential sensitivity to neighboring 
responses is one of the markers for local memory 
circuits, and we hope that the relation between 
this neuronal response property and memory will 
be explored further. 

III. MULTIPLE CAPTURE IMAGING SYSTEMS 
 
An increasing number of image systems use 
multiple capture methods.  These range from 
standard applications, such as the use of color 
filter arrays to acquire wavelength samples to 
sophisticated three-dimensional visualization 
applications.  Here we describe some innovative 
applications that use multiple capture. We review 
methods that might integrate well with simple 
image sensor hardware. 

A. Dynamic Range Extension 
 
The most challenging scenes for image capture 
are those that include a wide range of ambient 
lighting. For example, natural viewing 
conditions often contain shadow and direct 
illumination regions.  Intensity differences 
between such regions can exceed three orders of 
magnitude; neither photoreceptors nor typical 
image sensors can capture this intensity without 
significant loss of contrast information.  
Algorithms for selecting a best exposure value 
(combination of integration time and aperture) 
are important to electronic image acquisition.   
 
The large intensity range is often caused by 
spatially varying illumination.  Thus, single 
variable mechanisms, such as controlling the 
lens aperture (pupil) or exposure time, are not a 
satisfactory control parameter for managing the 
large dynamic range. Instead, space-varying 
methods for extending dynamic range are 
needed. 
 
One way to extend the dynamic range of an 
image acquisition system and still allow for 
spatial variation is to acquire multiple exposure 
durations of the image. For example, suppose 
one takes several images of a scene at different 
exposure durations.  Then, one can assemble a 
single image from different locations within this 
image collection [57, 58].  In this way, each 
region of the final image has its own unique 
exposure duration. 
 
Several groups have used methods for 
integrating data from multiple images captured at 
different temporal or spatial sensitivity.   For 
example, Takahashi et al. [57] described a 
temporal approach for extending image dynamic 
range.  They combine multiple captures obtained 
using different exposure durations from a 
conventional CCD sensor.  Because the CCD 
read-out process is quite slow and destroys the 
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accumulated charges, multiple temporal captures 
combined with multiple sensor read-outs, off-
chip processing is required. 
 
Street [59] described a spatial approach for 
extending image dynamic range. He proposed 
creating a sensor array with photosensitive 
elements that each have a different light 
sensitivity.  By combining measurements from 
sensors with high and low sensitivity, the overall 
dynamic range of the array could be extended.   
 
Nayar and Mitsunaga also use this principle [60].  
They propose to place neutral density filters that 
reduce the sensitivity of individual sensors.  
Placing a mosaic of neutral filters with several 
densities extends the dynamic range, much as 
using different temporal integration times will do 
so. This method trades spatial resolution for 
dynamic range, and it fails to take advantage of 
the shorter integration time (better temporal 
resolution) that can be obtained for bright image 
regions.   A CMOS imager implemented by 
Bajovic, however, exploits this effect.  Rather 
than fixing the exposure time and measuring the 
accumulated charge, this sensor measures the 
exposure time necessary to obtain a given charge 
level, thus exchanging the role of time and 
accumulated charge [61]. This design does not 
involve multiple captures, but it does offer a 
space-varying approach to extending dynamic 
range. 

B. Active Illumination 
 
Kimachi and Ando use a combination of active 
illumination and multiple captures in a video 
sequence to permit rendering of the image as if 
illuminated by one of a variety of illuminant 
sources [62].  In their method, each illuminant 
flickers at a separate frequency.  The image data 
can be demodulated to produce a separate still 
image that shows the scene illuminated by only 
one of the various sources. 
 
To implement the method efficiently, Kimachi 
and Ando have designed and implemented a 
special purpose CMOS sensor.  The sensor 
demodulates the time-varying charge at each 
pixel to measure the signal amplitude at a 
specific temporal frequency [62, 63].  Simpler 
forms of this method, say differencing the 
images acquired using the ambient illuminant 
and sum of the ambient illuminant and an active 
illuminant, can be used for a variety of purposes, 

including reflectance estimation and illuminant 
estimation [63, 64].  

C. Image Mosaicking, Stabilization, and 
Super-resolution 

 
For many applications, it is desirable to create 
high-resolution pictures with a wide field of 
view.  Widening the image rendered on a fixed 
sensor trades field-of-view for spatial resolution.  
It is required, then, to develop methods for 
combining multiple captures to increase the 
field-of-view and retain the spatial resolution 
intrinsic to the optics and sensor [65, 66].  These 
are called image mosaicking methods.  
 
Image mosaicking applications range from aerial 
imaging to video retrieval to surveillance. The 
key computational step is the registration of 
overlapping regions in the individual images. If 
the camera only tilts and pans, and there is thus 
no parallax between the images, the computation 
is relatively simple. Registration of planar 
patches, viewed from different angles such as the 
registration of aerial photographs of flat terrain, 
is also straightforward.  Integrating views of a 
three-dimensional scene from different vantage 
points, however, requires the reliable and precise 
estimation of extrinsic and intrinsic camera 
parameters and 3-d scene structure [67, 68]. An 
example of such 3-d mosaicking is shown Figure 
2. The example shows that combining multiple 
images from different time instances can fill in 
occluded background, such that a complete map 
of the background results. Such a map is never 
visible in any individual image.  
 
Image mosaicking is closely related to electronic 
image stabilization, where small, involuntary pan 
and tilt motions are removed from a video 
sequence [69]. Such techniques are common 
today even in consumer camcorders.  
 
Once image stabilization algorithms yield 
multiple registered images, one can attempt to 
combine these images such that noise is reduced 
or even the spatial resolution is increased. Super-
resolution schemes have received considerable 
attention in the image processing research 
community over the last years and impressive 
results have been shown [70-73]. Super-
resolution techniques typically exploit imperfect 
anti-aliasing filtering before image sampling.  In 
this case, frequency components beyond the 
Nyquist limit are still present in each image as 
aliasing. By combining multiple images with 
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suitable linear, shift-varying interpolation, these 
aliased components can be recovered and sub-
pixel accuracy can be achieved.  Interestingly, 
binocular human visual acuity is better than  
monocular acuity [74]. However, the binocular 
resolution gain is consistent with the gain 
expected by noise reduction and does not 
necessarily suggest super-resolution involving 
aliasing cancellation from multiple images. 

D. Multiple Apertures and Multiple 
Viewpoints 

 
Information about object structure can be 
obtained by measuring multiple images using 
optics with different-sized concentric apertures 
or a variety of focal plane depths [69, 75].  By 
observing the relative blur between these images, 
one can learn something about the distance to the 
object and its three-dimensional structure.  These 
algorithms, sometimes called depth-from-

defocus, can be based on sophisticated image 
filtering and analyses [76]. Image content can be 
manipulated in a depth-dependent way by clever 
linear combinations of the images, for example 
to create new images that represent a variety of 
depth-of-fields that are not directly measured 
[77].  

 
(a) (b)

(c) (d)

(e) (f)

 
 

Figure 2: An example of 3-d mosaicking. (a,b) 
Two frames from the video sequence 
Flowergarden.  Three dimensional camera 
rotation and translation, as well as 3-d scene 
structure, are recovered from the sequence.  
Using this information, the tree can then be 
removed by using proximity as a cue. By 
combining multiple images from different 
time instances, the background occluded by 
the tree is filled in. (c) The first frame, with 
the foreground removed, is shown. (d-f) 
Constructed images after combining 9, 17 and 
25 images are shown. The background is 
never completely visible in a single input 
frame, but 3-d mosaicking nevertheless fills in 
the occluded background. (Source: [67]).  

 
Rather than capturing two or more images with 
different concentric apertures, images of the 
same object or scene are often captured with the 
same aperture, but from different vantage points. 
Classic stereo imaging is certainly among the 
oldest examples [78]. Stereo image pairs are 
viewed with an appropriate display system that 
directs each image to the corresponding eye. The 
analogy between stereo image acquisition and 
binocular biological vision is obvious.  
 
It is desirable to build image applications in 
which a viewer can (a) see a scene rendered an 
image from many vantage points, (b) fly through 
a rendered 3-d scene, or (c) change an object’s 
three-dimensional position. Computer graphics 
algorithms accomplish this easily for a given 3-d 
geometry, surface reflectance, and illumination. 
For natural scenes, where 3-d geometry, 
reflectance and illumination are not known a 
priori (and might even be ill-defined) multiple 
captures architectures can be used in systems 
designed to render a scene from several different 
vantage points.   
 
The design of such systems is based upon the 
idea that the rays scattered from a surface 
contains a multiplicity of views (the so-called 
light-field), and that by appropriate measurement 
these views can be obtained by a small array of 
cameras: Adelson and Wang trace this notion 
back to Leonardo’s notebooks [79].  Methods for 
acquiring multiple images and then reordering 
and interpolating the data to provide a variety of 
viewpoints of the scene are now used extensively 
in computer graphics.  These techniques are part 
of the general trend toward image-based 
rendering [80, 81] [82, 83], which complements 
the classic geometry-based computer graphics 
methods. 
 
Adelson and Wang describe an integrated sensor 
design that acquires multiple images of the scene 
from slightly different points of view [79].  Their 
design uses a single camera lens coupled with a 
lenticular array that separates the image onto an 
interleaved mosaic of sensors. While it is 
elegant, the Adelson and Wang design only 
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measures a narrow range of viewpoints.  Systems 
that move a single camera (or the object, or both) 
achieve a larger range of viewpoints.  Many 
groups have built these types of systems for 
static objects or scenes. To our knowledge, the 
largest light field that has been acquired in this 
fashion to date is that of the Statue of Night by 
Michelangelo. In March 1999, Levoy and a 
group of his students from Stanford University 
acquired 24,304 images, each with resolution of 
1300 x 1000 RGB pixels. One other noteworthy 
recent design is Concentric Mosaics where a 
camera is mounted at the end of a horizontal 
arm, looking outwards. As the arm swivels 
around, the camera acquires a full 360-degree 
panorama of the environment, and 
simultaneously sweeps a range of vantage points 
[84]. For acquiring motion video from many 
simultaneous vantage points, systems with arrays 
of video cameras have been built, for example by 
a team at Carnegie Mellon University [85-87]. 

ADC ramp
Cstorage

Comparator

Latch Read-out

Reset

S0

S1

S2

S3 Quad pixel layout

 
Figure 3.  Design of a CMOS image sensor with 
a programmable digital pixel sensor.  In this 
design, one analog-to-digital converter was 
shared amongst four pixels.  The data were 
sampled several times, so that each pixel could 
have its own exposure duration.  In addition, 
through programmable control of the switches 
the pixels could be read out singly (high spatial 
resolution) or the charge from all of the pixels 
could be pooled and read (low spatial 
resolution).  The sensor was implemented in 
0.35-micron technology [91].  The pixel circuit is 
diagrammed on the upper left; an image of the 
sensor and the pixel layout are shown in the 
lower right.  

 
Biological vision systems infer a great deal about 
the 3-d structure of their environment by moving 
through it. Motion parallax is one of the 
strongest depth cues. Owls, when otherwise 
sitting still, can be observed to move their heads 
sideways to improve their depth perception by 
motion parallax and recognize prey. How 3-d 
scene structure is represented internally in 
biological vision systems is still an open 
question, but, we believe, multiple parallel 
representations will be found, analogous to 
efficient light-field representations in technical 
systems, that combine both many views and 
coarse geometry to aid processing and 
compression [88-90]. 

IV. EXAMPLE: THE STANFORD CMOS SENSOR 
 
In this section, we turn from general principles 
and a survey of techniques to specific systems 
we have developed for image acquisition and 
reproduction.  By describing these applications, 
we hope to explain further why we have 
concluded that multiple image representations 
and local memory are of general importance to 
engineering and biological systems. 
 
Earlier, we described how it is possible to 
acquire several images of a scene at different 
exposure durations and then to combine these 
distinct images to obtain a single high dynamic 
range image.  A more efficient method of 
achieving the same purpose is to take one picture 

but make a series of sensor measurements at 
different times.  From this series of 
measurements, we obtain a series of nested 
pictures with increasing exposure durations.  
Thus, from a single acquisition we acquire 
multiple representations of the image at different 
exposures. 
 
The CMOS sensors designed and implemented at 
Stanford perform this process in hardware, 
within a single sensor at high speed [91-93].   
During a single exposure, the scene intensity is 
sampled at high speed using an analog-to-digital 
converter (ADC) placed within each pixel.  The 
ADC measures the stored charge non-
destructively. Hence, the first time sample 
obtains a brief exposure; each subsequent time 
sample measures an increasingly long exposure. 
The length of the exposure duration is set at a 
level that permits the darkest image region to be 
estimated.  We call the pixel design 
incorporating the local ADC a digital pixel 
sensor (DPS). 

A. Multiple Capture DPS 
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The first implementation of the DPS design was 
a 640x512 CMOS sensor built using 0.35-micron 
technology.  Each pixel spanned 10 microns on a 
side and contained a light sensor (photodiode), a 
bit-serial analog-to-digital converter (ADC), and 
one bit of dynamic memory (DRAM).  In the 
first implementation, every ADC was shared 
among a block of four adjacent pixels (Figure 3).  
A number of the sensor properties were under 
programmable control. For example, by 
manipulating external signals, the sensor’s 
transduction function (the function that governs 
the relationship between light level and digital 
value) could be varied. In addition measurements 
could be obtained from each pixel separately, or 
from the sum of any combination of the four 
pixels within the block [1, 91].  Such spatial 
binning is well known imagers; though perhaps 
less well known is a creative suggestion from 
Cornsweet and Yellott [94].  These authors 
suggest that the extent of the spatial pooling 
should depend on the local image intensity.  The 
DPS imager uses this notion with respect to 
temporal integration. 
 
Figure 4 illustrates how this multiple capture 
single image architecture extends dynamic range. 

Panels (a-c) show measurements of a scene made 
by three temporal samples while the pixels were 
charging. The image in panel (a) is from the first 
sample.  Portions of the image are under-exposed 
and contain consider spatial noise.  The image in 
panel (c) is from the last temporal sample, so that 
portions of this image are saturated.  Because of 
the non-uniform illumination, no single exposure 
value captures both the light and dark parts of the 
image. 

Combined Image

Exposure 4TExposure T Exposure 16T

(d) (e)

(a) (c)(b)

 
Figure 4.  The multiple capture architecture for 
dynamic range extension is illustrated.  The three 
images in the top row were acquired during a 
single exposure by sampling the sensor repeatedly 
(a-c).  Each of the exposure durations is 
problematic, containing either a noisy region or a 
saturated region.  Combining the last good sample 
and scaling the value appropriately, we can 
assemble the data into a single high dynamic range 
image (d).  The pixel color in panel (e) corresponds 
to the colored boxes surrounding the images in (a-
c).  The pixel color indicates the source image for 
each of pixels in the combined image (d).  

 
To create a high dynamic range image, we select 
pixels from the different sample times in (a)-(c), 
choosing an appropriate duration sample.  The 
image in panel (d) is constructed from the three 
separate images in (a)-(c) by selecting the pixel 
reading from the last sample prior to pixel 
saturation (or the final sample if the pixel never 
saturates).  The coloring in panel (e) indicates the 
image source for each pixel.  Because the DPS 
design uses non-destructive reads, the total 
image acquisition time is no longer than the time 
needed to measure the dark image regions.   
 
Figure 5 illustrates graphically how a high 
dynamic range image is assembled from the 
multiple images.  Panel (a) illustrates how pixel 
digital value increases linearly with exposure 
duration (assuming a constant input intensity).  
Measurements from  four pixels with different 
intensities are illustrated; the slope measures the 
pixel intensity.  The bright pixel (highlight) 
would ordinarily reach saturation quickly.  In a 
conventional camera, the exposure value 
algorithm might choose a brief duration; say at 
the first time sample, to avoid saturation.  
Consequently, pixels in the low lights would 
record low values that are not significantly 
different from the lowest quantization level or 
the system noise.  Hence, using a single short 
capture, the dark regions are measured poorly. 
 
The DPS sensor improves system sensitivity by 
making multiple image measurements.  The 
bright regions are measured at the first time 
sample and the lowlights are measured at later 
times.  After enough time the signals from the 
dark image regions accumulate significant 
charge and become reliably different emerge 
from the lowest quantization level.  With this 
design the pixel digital value is estimated from 
the last sample of the image prior to saturation, 
when sensitivity is best.  Each pixel is captured 
using a duration optimized for that pixel’s 
intensity, and the exposure duration is spatially 
varying.  . 
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Figure 5bc shows the transduction function that 
maps light intensity to digital value.  The 
transduction function for a conventional single  
 
time sample imager is shown in panel (b).  The 
stair patterns on the left and right of that graph 
show the functions for a long-duration and short-
duration exposure respectively.  Changing the 
exposure duration alters the slope of the function 
and changes the size of the quantization bins.  
For any duration the quantization bins are spaced 
evenly, and the bin sizes are inversely related to 
exposure duration. 
 
Figure 5c shows the transduction function using 
the MCSI architecture. Again, the transduction 
function is linear.  The quantization bin sizes 

vary systematically:  Low intensity levels are 
quantized more finely than high intensity levels.  
This occurs because the high intensity values are 
obtained from the short-exposure durations and 
the low intensity values are obtained from the 
long-exposure durations.   
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Figure 5.  The conversion of intensity to digital 
value (transduction function) is analyzed for a 
digital pixel sensor.  (a) For a constant image, 
charge accumulates linearly at each pixel.  The 
four lines show charge accumulating in regions 
with four different intensities.  In the digital 
pixel sensor, the charge value is sampled at 
multiple times, indicated by the vertical dashed 
lines.  Bright regions are measured by early 
time samples and dark regions are measured by 
later samples.  The pixel response is coded both 
by the sampled level and the measurement 
time.  (b) In a conventional pixel, the 
transduction function is linear, and the size of 
the quantization bins is inversely related to the 
exposure duration.  (c) The DPS architecture 
combines data from short and long exposure 
durations.  The transduction function is again 
linear, but the quantization bin increases with 
signal intensity. 

 
The uneven size of the quantization bins has an 
interesting visual consequence.  The mean 
intensity different needed to discriminate 
between high intensities is greater that required 
to discriminate low intensities. This 
discrimination function corresponds well to 
human visual sensitivity and the observation that 
is generally called Weber’s Law: Threshold to a 
change in intensity increases proportionally to 
the signal level [18, 95].  Ordinarily, Weber’s 
Law is described by the changing slope of a 
logarithmic transduction function.  In the MCSI 
architecture, however, the sensor encoding is 
linear, which is beneficial for image-processing 
steps (e.g., demosaicking, color-balancing). The 
match to visual intensity discrimination is 
implemented by the varying bin sizes inherent in 
the MCSI architecture. 
 
Many types of rules can be used to derive a 
digital value from the multiple samples of the 
pixel.  For example, it is possible to include a 
statistical analysis of the reliability of signals 
obtained from each of the samples.  It is further 
possible to improve the quality of the 
measurements by analyzing the multiple captures 
and deciding whether or not the samples are 
consistent with a still image. Hence, in addition 
to expanding the dynamic range we believe that 
multiple captures will also be helpful in 
interpreting image motion and thus image blur-
free [6, 96]. 
 
Are there biological vision specializations that 
correspond to the multiple exposure durations?  
Measurements of human temporal integration 
show substantial variation with mean intensity 
level.  At low mean intensity levels, temporal 
integration of the signal appears to extend over a 
period of more than 100 ms; at high mean 
intensity levels temporal integration is on the 
order of 10 ms [97]. Further, it appears that the 
visual system contains multiple temporal 
sensitivity mechanisms with peak sensitivities 
centered at different resonant frequencies [39, 
40].  It is possible that these differences in 
measured temporal integration are mediated by 
signals from different mosaics, and that a 
multiplicity of mosaics serves to increase the 
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Figure 6:  Partial DPS circuit diagram.  
See text for details. 

 
Finally, we have emphasized that the DPS sensor 
differs from CCD because data are read non-
destructively.  In this regard, the DPS reading 
process parallels the way photoreceptor signals 
are read by post-receptoral neurons.  Many 
different post-receptoral cells are driven by each 
photoreceptor, and the photoreceptor signal 
follows the light continuously.  In this way, post-
receptoral neurons can be structured to measure 
photoreceptor signals in a variety of ways, 
averaging differentially over space and time. 
 
One challenge that results from acquiring high 
dynamic range images is this:  conventional 
displays do not have the capability to display 
such a dynamic range.  To render the image 
shown in Figure 4d, we compressed the data 
using a logarithmic transformation.  More 
sophisticated algorithms have been explored, and 
more work on this topic is needed [98-100]. 

B. Local Memory  
 
All electronic image sensors include temporary 
memory to support external transfer of image 
data from the pixels array. In CCD image 
sensors, the temporary memory is in the form of 
analog shift registers (vertical and horizontal 
CCDs). In CMOS image sensors with analog 
pixels [101, 102], the memory is located at the 
bottom of the sensor array and temporarily stores 
at least one line of image data.  
 
In the first DPS implementation, each pixel has 
one bit of temporary memory to store the `bit-
plane’ before it is read out.  With such a limited 
amount of local memory, intermediate results 
had to be transferred from the sensor to computer 
memory where the image was assembled.  The 
next ADC step could not complete until the 
single-bit memory value was transmitted off-
chip; consequently, the ADC process was limited 
by the inter-device bandwidth. 
 
In the second DPS chip, we added more memory 
to store the ADC results of each pixel.  In this 
implementation each pixel contained a bit-
parallel ADC and 8 bits of DRAM (see the 
partial circuit diagram in Figure 6) [93]. By 
placing more memory at the pixel, we could use 
a simpler ADC and communication mechanisms.  
This sensor, which has 352 x 288 pixel array, 
was built using 0.18-micron CMOS technology. 

The digital value measured at each sample time 
is stored temporarily in the 8-bit memory.  
Because the data is stored digitally on the sensor,  
the entire image array can be read at a very high 
rate (1 GB/sec). Moreover, while memory read-
out takes place, the sensor continues to integrate 
charge (pipelining).  The added memory 
improved the logical separation between the 
ADC process and the data communication.   
Figure 7 shows the image of a wheel rotating at 
220 revolutions/sec.  The images were acquired 
sequentially with an integration time of 100 
microseconds per frame and no inter-frame 
delay. 
 
The additional memory affects a space-time 
tradeoff.  We provide more space to store the 
ADC result, more data communication lines to 
address the memory, and a memory controller to 
read the results; in exchange we simplify the 
communication timing for transmitting the 
results along the imaging pipeline: With added 
memory available to each pixel, the ADC 
process overlaps less with data communication.  
The initial reason for adding memory, then, was 
to improve the timing between the ADC 
measurements and communication channel 
timing.  
 
The next generation of our CMOS sensor will 
take further advantage of local memory and 
processing. By expanding the processing 
capabilities, it should prove possible to create a 
better quality sensor data.  As one example, Liu 
and El Gamal [96, 103] have shown that by 
adding a small amount of extra processing, one 
can use near-optimal statistical methods to 
combine multiple samples of the pixel data on 
the sensor itself.  These statistical methods 
account for the different levels of reliability of 
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the data acquired at different times.  Further 
developments in this area will include the 
detection of nonlinear growth in the time 
measurements that can account for image or 
camera motion.  Lim and El Gamal have 
developed methods to combine multiple image 
samples to measure motion flow [6, 104].  These 
methods may lead to algorithms that will reduce 
or eliminate motion blur.  The Stanford group 
has developed algorithms using multiple samples 
in order to perform color balancing and 
rendering [63, 64]. 
 
Our experience with this hardware design 
suggests that algorithms based on local spatial 
and temporal computation are well suited to 
being carried out on the sensor.  The value of 
local memory to enable this processing has 
impressed us, and for this reason we suspect that 
even the peripheral visual pathways are served 
by local memory circuitry. 

V. DISCUSSION: ELECTRONIC IMAGING AND 
VISUAL NEUROSCIENCE 
 
There have been many attempts to characterize 
the connections between biological vision and 
electronic imaging systems.  While it is beyond 
the scope of this paper to review this literature, 
we do note that the ideas developed here differ 
from the best-known efforts to share ideas 
between the disciplines of biological and 
electronic imaging systems ([4, 105, 106]).  Both 
Marr and Mead argued that we should look to 
the biological design to inspire electronic design.  
In certain instances, we agree that the insights 

will necessarily flow from biological vision to 
engineering design.  Image quality metrics for 
evaluating image systems must be based on 
models of human visual performance (e.g., 
CIELAB), and not the common metrics used in 
engineering design (e.g. RMSE) [107-111]. 

 

Figure 7.  Four images obtained from a high-
speed digital pixel sensor with eight bits of 
local memory.  See text for details (Source:  
Kleinfelder et al.[93]). 

 
The approach here is based on the premise that 
ideas should flow in both directions. There is 
much value in examining the necessary elements 
of electronic implementation and asking whether 
these functions might be present in the neural 
implementation.  Our focus here is on the value 
of local memory; it is also possible that other 
basic circuit functions, such as timing circuitry, 
are present in the biological circuitry (e.g. [112, 
113]). Hence, we think efforts to think through 
clean designs of electronic imaging systems will 
raise novel questions and insights about neural 
circuitry 
 
We have identified principles that span the fields 
of electronic imaging and biological vision.  The 
principle of multiple representations of the image 
is well established in the neuroscience literature, 
and we believe that this idea is also relevant to 
the process of capturing and transforming images 
for reproduction.  Based on our experience with 
system design, we believe that temporary storage 
of intermediate output is a valuable tool at all 
stages within the imaging pipeline, and we 
suggest that such functionality is likely to be 
found distributed within the visual pathways.  
We are certain that many other common design 
principles can be found 
 
Despite the enormous differences in 
implementation detail between electronic circuits 
and biological vision, we believe that 
understanding these broad principles may be a 
natural bridge for the exchange of ideas.   We 
hope this article helps create a bridge to carry 
ideas between these two disciplines. 
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