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~ Measurement of Small Color Differences

Brian A. Wandell
Stanford University

. A theoretical problem in color vision is to represent lights so that the discrim-

inability of similar colors may be easily calculated. There have been many at-
tempts to derive representations for discriminability from basic principles of
visual function. For the last 100 years these attempts have mainly focused on
geometric representations where lights are treated as vectors and two pairs of
lights are equally discriminable when their vector differences are equal. A general
characterization of vector models emphasizes the empirical rules discriminability
judgments must obey in order to be described adequately by vector differences.
Experimental evidence violates these rules, indicating that such geometric rep-
resentations cannot succeed. Statistical representations based on maximum-like-
lihood decision rules provide a class of representations that emphasize the vari-
ability of both the stimulus encoding and neural decision-making processes. In
these representations variability is inherent to the representation and not derived
from an external source. Properties of statistical and geometric models are com-
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pared with each other and with various psychological models of choice.

The new student of* color vision begins
with a false sense of security. The student
learns that there are simple computational
rules for assigning three-dimensional coor-
dinates to lights. This scheme assigns equal
coordinates to lights only when the lights
appear identical (even though the lights may
be physically different). Furthermore, the
coordinates assigned to a light (a '+’ b)
formed by mixing together lights @ and b is
simply the sum of the coordinates assigned
to light a plus the coordinates assigned
to b.

Such a scheme for assigning vectors to
lights characterizes those instances when
different lights have precisely the same color
appearance. This leads the initiate to imag-
ine that these same coordinate values—or
some close relative—can be used to calculate
small differences in color appearance. This
poss1b1hty is particularly attractive because
an assignment of numbers to colors that per-
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mits differences in appearance to be com-
puted would be the basis of a true science
of psychological objects—a theory of mea-
surement being the basis of science and color
appearance being a product of mind not
matter.

There have been many attempts to predict
small color differences based on the conven-
tional ‘methods of assigning coordinates to
lights. Here I summarize current efforts to
assign numbers to lights in such a way that
identity of appearance between pairs of
lights (@ appears identical to a'), and identity
of discriminability among quadruples of
lights (the discriminability of a and o is:
equal to the discriminability of & and #'),
may be computed. The difficulties in making
such an assignment are well known to color
theorists (e.g., Wyszecki & Stiles, 1967),

‘though less well known to psychologists. In

the past few years some of the difficulties in
making such an assignment have. become
better understood, and new ideas as to how
to proceed have been suggested.

The organization of this paper is the fol-
lowing: The next section presents the foun-
dations of color measurement—the color-
matching experiment. Following that are
sections containing a brief review of selected
attempts at the measurement of small color
differences (line-element models) based on
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a principle I call the adaptation hypothesis;
a framework for describing these color met-
rics, using notation from linear algebra; a
description of an empirical test of the ade-
quacy of the framework; alternative theo-
retical frameworks and further examples;
and finally, a discussion of issues that are of
relevance to psychological decision theories
of variables other than color appearance.

Fundamentals: Motivation and
Color Matching

Consider the following problem: A man-
ufacturer wishes to produce an object with
a specific color appearance. He can specify
the desired appearance of the product, and
he can measure the actual appearance of his
product. Because of noise inherent to the
production process, the actual appearance
will generally not be identical to the desired
appearance. The manufacturer would like
to know whether the actual color is suffi-
ciently different from the desired color so
that the product must be discarded or
whether the colors are sufficiently similar so
that the product may be safely sold without
fear of consumer complaint. Products may
be anything from textiles to television pic-
tures.

From this description of the problem, it
becomes evident why theories of small color
differences have been of particular interest.
When the desired outcome is red and the
product is green, the manufacturer has no
trouble in deciding what to do. It is only
when color differences are small that the
manufacturer seeks guidance from stan-
dards set by science and the government.

Because the need for industrial tolerances
on this question is great, governments have
funded international commissions to set
standards concerning the amount of devia-
tion permissible before an object can no
longer be called by a patented color name.
Much of the data on discriminability of
small color differences was collected by these
commissions. Curves have been calculated
analytically that characterize these mea-
surements, and based on these curves color
definitions have been created that provide
manufacturers with tolerable, though not
excellent, guidelines. Following Wyszecki
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and Stiles (1967), I will call attempts at
strictly computational solutions to the esti-
mation of differences in color appearance
empirical color measurement,

In addition to analytic solutions to color
scaling, there have been many attempts to
predict color differences from the principles
of visual organization. The main concern in
this case is not primarily with discovering
better formulas for predicting the visibility
of small color differences but rather with
testing hypotheses concerning the organi-

" zation of psychological color mechanisms.

In these theories the derivation of a color
metric for small differences represents a nat-
ural outcome of some theory of color vision.
Again, following Wyszecki and Stiles (1967)
I will call attempts at creating color mea-
surements from the principles of visual or-
ganization inductive color measurement.
My comments here will be generally re-
stricted to theories of small color differences
that are derived from hypotheses about the
structure of the visual mechanisms, that is,
to the structure of color perception. Refer-
ences to work on analytic measurement will
be included only insofar as inductive theories
may be tested against data collected for the
purpose of defining analytic solutions to the
scaling of small color differences. For more
complete reviews of all aspects of the mea-
surement of small color differences see Wy-
szecki and Stiles (1967), Judd and Wyszecki
(1963), LeGrand (1970), Bouman and Wal-
raven (1972), Krantz (1972), Vos, Friele,
and Walraven (1972), and Boynton (1980).

The Color-Matching Experiment

The color-matching experiment is the
foundation of color measurement. Theories
of small color-difference measurements must
include the case of zero difference—that is,
color matches—as a special case.

The stimuli in a typical color-matching
experiment are shown in Figure 1. An ob-
server examines a bipartite field, one half of
which contains a fixed light and the other
half of which contains a mixture of three
lights whose intensities are under the ob-
server’s control. The entire field is confined
to the central region of the observer’s fovea.
The observer’s task is to render the appear-
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ance of the field completely uniform, that is,
to match the two halves of the field in ap-
pearance. To do this the observer is free to
adjust the intensity controls of the three
lights, called the color-matching primaries,
in any way whatsoever.

The importance of the color-matching ex-
periment is that for any fixed light a normal
observer can always obtain a match using
the mixture of three primary lights. No
fewer than three will suffice; three are suf-
ficient. The only caveat is that for some fixed
lights one or two of the primary lights may
have to be added to the fixed light rather
than to the variable half of the field.

Two further, and remarkable, properties
of this experiment are the following: First,
when a match has been obtained, multiply-
ing the intensities of all lights on both sides
of the bipartite field by equal amounts does
not disturb the match. Second, adding the
same amount of any light to both sides of
the bipartite field does not disturb the match.
These empirical observations are true to a
high degree of precision over much of the
visual range (see Trezona, 1953, 1954; Wy-
szecki & Stiles, 1967) and are generally re-
ferred to as Grassman’s Laws of Color
Matching (Grassman, 1853).

One direct consequence of these empirical
properties is that colored lights may be rep-
resented as vectors. This fact has long been
understood (Schrodinger, 1970, gives an es-
pecially clear account). An excellent recent
statement of the vector representation theo-
rems for lights from the color-matching ex-
periment is given by Krantz (1975). The rep-
resentation of colored lights may be stated
quite simply in terms of the color-matching
experiment itself. Any light, 4, can be rep-
resented in a three-dimensional space where
the coordinates of the space are the inten-
sities of the three primary lights whose mix-
ture matches the light, a. By convention we
indicate a shift in the side of the bipartite
field of the primary light by a change in sign
of the intensity of the coordinate value as-
signed to that primary light. Thus, in effect,
the settings on the three knobs of the match-
ing primary lights are the coordinates that
we assign to any arbitrary light, a.

A second consequence of the color-match-
ing experiment and Grassman’s laws is-that
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Color matching experimental arrangement

Figure 1. Spatial arrangement of a typical color match-
ing experiment. (The subject adjusts the intensities of
the primary lights on the right-hand side of the bipartite
field in order to match the appearance of a standard
light, a, on the opposite side of the field.)

when different sets of primary lights are used
to perform matches the resulting vector rep-
resentations will be related by a linear trans-
formation. This, too, has been empirically
demonstrated many times. It will be con-
venient to summarize these results in a single
theorem,

COLOR MATCHING THEOREM. Let a and
b be two lights of arbitrary spectral distri-
bution. We say that two lights, a and a', are
isomeric when they are physically identical
and metameric when they are physically
distinct but appear identical to the observer.
We write a is metameric to a’ by the symbols
a ~ a' and we denote the physical super-
position of two lights, a and b, as a'+' b,

The premises of the color-matching theo-
rem are (essentially) that any light, @, may
be matched by the mixture of three lights
and that Grassman’s laws are correct. The
conclusions of the color-matching theorem
are as follows: We may represent any light,
a, as a three-dimensional vector, V(a), such
that

(1) a ~ 4 if and only if V(a) = V(<').

(2) V(a'+' b) = V(a) + V(b).

(3) Representations having properties (1)
and (2) are unique up to a nonsingular (i.e.,
has an inverse matrix) linear transformation
of the coordinate space.

Proofs of these conclusions are provided
by Krantz (1975) and Schrodinger (1970).

The representation of lights embodied in
this theorem has three central properties:
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(a) Lights that are physically distinct, but
perceptually identical, are mapped into the
same coordinate value. (b) The physical act
of mixing two lights is captured by the sim-
ple computational operation of adding vec-
tors (see Cornsweet, 1970, for examples and
a clear description of how these calculations
‘may be carried out). And (c) all such rep-
resentations are related by a linear trans-
formation of the coordinate system.

The Extension to Color Differences

Based strictly on a consideration of the
experimental procedure, the color-matching
experiment can have little to say about dif-
ferences in color appearance. In the color-
matching experiment observers are asked
only to make judgments concerning the iden-
tity of lights—they provide no information
as to how different two lights ¢ and b may
appear when @ and b do not match. From
the color-matching experiment, therefore, it
is difficult to make deductions about differ-
ences in color appearance (but see Mac-
Adam, 1942, for an ingenious approach).

It is tempting, however, to try to make an
identification between distances measured in
the representation space of colors and dif-
ferences in color appearance. The simplest
idea is that the (Euclidean) length of the
vector difference between two lights is a
measure of the different appearance of the
two lights. This idea is incorrect, but it will
be helpful later if we specify why, precisely,
this scheme cannot work.

Consider two lights, @ and a '+’ 6, that are
just noticeably different from one another.
Let V(a) be the vector associated with @ and
let V(a '+ &) = V(a) + V(§) be the vector
associated with a '+ . The vector difference
between these two lights, relative to the rep-
resentation V, is V(8). Imagine we now in-
crease the intensity of the light a at each
wavelength by a factor I, and denote this
increase as Ixa. The vector difference be-
tween Ixa and Ixgq ‘+' & remains V(3). If the
discriminability of two lights depended
merely on the vector differerice between
those lights, Ixa '+' 6 and Ixa should be just
as discriminable as a '+' 6 and a.

This implication can be tested and found
to be false. As the intensity of light & is in-
creased, the sensitivity of the visual system
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generally decreases (the Weber-Fechner re-
lationship; but see Polden & Mollon, 1980).
In the context of an increasingly intense
light, Ixa, the visual significance of a differ-
ence, 6, becomes vanishingly small. This
rules out the possibility that vector differ-
ences from color-matching measurements
may be used as a measure of color differ-
ences. The problem, then, is to devise a the-
ory of color discrimination in the face of
these objections.

Some Theories of Color Discrimination

The principle objection just raised against
using vector differences of color-matching
coordinates as a measure of perceived color
differences is that as we vary the comparison
lights the adapted state of the eye is altered.
This suggests that if we could correct the
metric for changes in the adapted state of
the eye, we would be able to construct a color
metric based on vector differences of the
color-matching coordinates. I will call this
possibility the adaptation hypothesis.

In the normal development of color rep-
resentations, the adaptation hypothesis- is
rarely made explicit. It is more common to
group color metrics by their computational
formulas rather than by the principles of
visual organization they represent. It will be
convenient for the organization of this re-
view, however, to group together all color
metrics that assume the adaptation hypoth-
esis. There are several inductive color met-
rics that are based on the adaptation hy-
pothesis. I now review three of these.

Helmholtz’s Color Metric

The dependence of an observer’s sensitiv-
ity on the ambient illumination is roughly
characterized by Weber’s law. This law as-
serts that observer sensitivity is proportional
to the energy in the background illumina-
tion. Helmholtz joined Weber’s law of ad-
aptation with the color-matching experiment
in an attempt to devise a measuré of color
differences. His effort is a particularly clear
example of an attempt to build an inductive
color metric from principles of the visual"
system, 7

The central idea of the Helmholtz color
metric is this: Helmholtz (1896) assumed
that the observer has direct access to the
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responses of the three receptor types, p (red),
v (green), and 8 (blue). He further assumed
that lights are discriminated by a compari-
son of the receptor signals of the three cone
types generated by the two comparison
lights, @ and a '+ 6. Let the effect of light
a on the three types of receptors be p(a),
v(a), and B(a). For small § we assume that
the difference in response of each of these
receptor classes between the lights a and
a'+ b8 is p(8), v(8) and B(3).

Helmholtz’ color metric . computed the
distance, ds, between a and a '+'8 via the
formula:

de? = <p(a)>2 <7(6)>2 <6(6))2
§? = + + :
p(a) v(a) B(a)

The numerator of each of the terms corre-
sponds to the difference in receptor response
between lights @ and a '+’ 6. The denomi-
nator represents a correction for the loss of
sensitivity of the receptor type due to the
light a. This correction takes the form of
Weber-law adaptation, where the response
of the receptor type is reduced in magnitude
by a factor corresponding to the quanta ab-
sorbed by that receptor type. The weighted
response differences of the receptors are
pooled via the Euclidean distance formula.

The principles of visual operation incor-
porated in such a model are quite simple and
elegant. When the state of adaptation—
caused by light a—is held fixed, distances
between neighboring points in the color
space are measured by a Euclidean distance
function in the coordinate system defined by
the receptor quantum catches. The effect of
varying the observer’s adapted state is merely
to stretch the axes by amounts proportional
to the quantum catch of the three distinct
receptor types. This is the essence of the
adaptation hypothesis: Fix the state of ad-
aptation and the color metric is simple and
Euclidean. Allow the state of adaptation to
vary and we correct our distance estimates
for the new state of adaptation.

Noise variance is not directly included in
this representation. Certain kinds of noise—
for example, independent additive noise that
causes ds? to fluctuate—can be incorporated
without changing the character of the the-
ory. However, only noise whose distribution
is independent of the different vector, V(4),
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can be accommodated without significantly
altering the theory.

Given knowledge of the absorption prob-
abilities of the three receptor types, p, v, and
8, one can compute the discriminability of
arbitrary lights. Conversely, to predict the
discriminability of various lights, one must
estimate these three absorption curves.
Helmholtz estimated the spectral sensitivi-
ties of p, v, and B required to predict the
outcome of a wavelength-discrimination ex-
periment performed by Konig and Dieterici
(in Helmbholtz, 1896). The derived spectral
sensitivities are an implication of the model
and may, therefore, serve to test it. The
shapes of p, v, and § that Helmholtz deter-
mined are now known to be inconsistent with
the spectral absorptions of the photopig-
ments of the receptors.

Because Helmholtz’s intention was to con-
struct a line element using the photopigment
quantum absorptions as the fundamental
entities, his theory of color differences can-
not be entirely correct. Close relatives have
been proposed, however, and I now consider
some of these alternative color metrics.

Modifying the Adaptation Assumptions:
The Stiles Color Metric

The Stiles (1946) color metric is a revision
of the metric proposed by Helmholtz, and
it too is consistent with the adaptation hy-
pothesis. Stiles assumed that the photore-
ceptors are the limiting stage of chromatic
discrimination, and he retained the spectral
sensitivities of the three receptor types as the
primitive axes of the color-metric space. He
modified Helmholtz’s color metric in two im-
portant ways.

First, Stiles did not accept Weber’s law
as a satisfactory approximation to the effect
of changes in the ambient illumination (ex-
cept at high intensities). Instead, he derived
an empirical function, called {[ ], to char-
acterize the loss of sensitivities in the sepa-
rate receptor classes as a function of their
quantum absorptions. The function { was
measured as part of a large empirical project
to study the effects of ambient illumination
on visual sensitivity (Stiles, 1939, 1978).

Second, Stiles assumed that the separate
receptor classes are not weighted equally in
their contribution toward chromatic discrim-
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ination. Again, based on his measurements
of the effects of ambient illumination, Stiles
assumed that the 3 receptors contribute little
to chromatic discrimination. He made this
assumption by introducing weighting coef-
ficients for each of the terms in Helmholtz’s
color metric. The Stiles color metric takes
on the form

ds’ = (rlte:((jgl) * <r([;;y((2;]>

(o)

where the R, G, and B terms are weighting
constants with B € R, G. Stiles determined
the size of the weighting constants by mea-
suring the limiting value of the Weber frac-
tion for detection mediated by each of the
separate receptor classes.

A complete description of the calculations
for predicting chromatic differences based
on this model is provided by Wyszecki and
Stiles (1967, p. 516 et seq.). They also ex-
plain why the model must be rejected. The
metric has also been discussed from the point
of view of statistical decision theory by
Trabka (1968) and Buchsbaum and Gold-
stein (1979). I will return to evaluate this
theory and its relatives after introducing one
further type of color metric that is consistent
with the adaptation hypothesis.

Modifying Assumptions About the
Fundamentals

\

A different theoretical approach to im-
proving the color metric is to deny the hy-
pothesis that the observer can have direct
knowledge of the output of the photorecep-
tors (Helmholtz’s assumption) or that the
photoreceptors are the limiting stage of chro-
matic discrimination (Stiles’s assumption).
Following the work of Hurvich and Jameson
(1955, 1957), many authors have suggested
that the limiting stage of chromatic discrim-
ination is the neural level determined by an
opponent transformation of the receptor re-
sponses. This kind of an inductive theory
replaces the p, v, and, 8 functions with the
responses of opponent pathways. Examples
of such theories include Friele (1961), Guth,
Massof, & Benzschawel (1980), Hurvich
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and Jameson (1957), Ingling (1977), Koen-
derink, Grind, & Bouman (1972), and Vos
and Walraven (1972a, 1972b). [ will use the
work of Guth and his colleagues as a clear
example of this kind of color metric. The
theoretical foundations for much of Guth’s
empirical analysis has been recently devel-
oped by Massof and Bird (1978a, 1978b)
and Massof and Starr (1980).

Figure 2 (a) is a picture of the neural con-
nections between the receptors and oppo-
nent-process neurons in the theory proposed
by Guth et al. (1980). The receptor re-
sponses centribute to three neural mecha-
nisms that the authors refer to as T, D, and
A. The channels are similar to the conven-
tional opponent channels of red-green, blue-
yellow, and achromatic. The response of the
neural mechanisms is characterized—for a
fixed state of adaptation and small signals
that do not significantly perturb the adapted
state-—by a linear transformation of the re-
ceptor signal outputs. For example, Guth et
al. (1980) define the spectral response of
their fundamental mechanisms under zero
adaptation (i.e., no ambient illumination)
via this set of equations: -

A = (.5967p + .3654y) (achromatic) (1)
T = (.9553p — 1.2836) (red-green) (2)
D = (—.0248p + .04830) (blue-yellow). (3)

The spectral sensitivity of these three mech-
anisms under zero-adaptation conditions is
drawn in Figure 2 (b). The spectral sensi-
tivity of the neural mechanisms varies as the
ambient illumination is changed. The sen-
sitivity varies because of two kinds of changes

~within the eye. First, the sensitivity of the

receptors varies with changes in the ambient
illumination. This causes the coefficients
within the parentheses of Equations, 1-3 to
vary. Second, sensitivity at neural sites be-
yond the point where the receptor signals are
combined varies with changes in the ambient
illumination. These changes are reflected in
coefficients outside the parentheses of Equa-
tions 1-3. When the model’s predictions are
compared with data collected with an adapt-
ing light present, the values of the coeffi-
cients must be readjusted to.reflect the ef-
fects of adaptation. Precise rules for these
readjustments have not been determined.



COLOR DIFFERENCES

When Guth and his colleagues (see Guth et
al., 1980) compare the model’s predictions
for data collected on nonzero backgrounds,
they adjust all nine coefficients in Equations
1-3 in order to bring the predictions into
accord with the data,

The specific calculation of an observer’s
sensitivity to the difference between two
lights, for a fixed adaptation level, is com-
puted by (a) choosing a set of coefficients for
Equations 1-3 and (b) computing the Eu-
clidean distance between the coordinates of
the lights via

ds? = A(8)’ + T(3)* + D(6)>.  (4)

While the principles of visual operation
are developed formally in papers by Massof
and Bird (1978a, 1978b) and Massof and
Starr (1978), we may describe these prin-
ciples informally by the following: First, for
a fixed adapting state, small color differ-
ences may be measured by distance in a
Euclidean vector space whose axes are a lin-
ear transformation of the receptor-based co-
ordinates. This assumption is tantamount to
supposing that the decision process of the
visual system in discriminating weak stimuli
is approximately linear. Second, the form of
the linear transformation is given by the
choice of coordinates in Equations 1-3. The
values of these coordinates are determined
by the observer’s state of adaptation. The
mechanisms that cause the coordinates to
vary are the losses in sensitivity at the re-
ceptors and neural sites of the visual path-
way. Third, just as in the case of Helmholtz’s
line element, noise in the decision process is
independent of the lights that are being dis-
criminated, that is, independent of the vec-
tor V(9). \

This kind of representation is still being
actively considered. In the following section
I generalize this representation and consider
how it may be tested.

A Formal Treatment of Color Metrics
The purpose of this section is to develop

a unified framework for describing metric

theories listed above, a framework that em-
phasizes the commonality of these theories.
The treatment here follows Krantz’s (1975)
work that characterizes the color-matching
experiment by using an algebraic and mea-
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Figure 2. (a) Representation of the receptor signals
(from the upside down triangles) into mechanisms that
perform a linear transformation of the receptor signals. .
(The discriminability of different lights is determined
by the value of their difference signal, ds?, determined
at the final decision site. Adapted from Guth, Massof,
& Benzschawel [1980] where their model is described
in detail.) (b) Spectral sensitivities of the linear trans-
formations of the receptor outputs caused by the trans-
formations A, T, and D. (The dashed line is the sensi-
tivity of A, the dash-dot line is the sensitivity of T, and
the smooth line is the sensitivity D. The curves are com-
puted from the equations in the text, and the receptor
sensitivities are from Smith and Pokorny [1972], whose
receptor values are normalized to a peak sensitivity of
1.0.)

surement theoretical conception. Krantz gives
three reasons for a new exposition of color
measurement.

First, both the language of mathematics and the stan-
dards of mathematical rigor have progressed greatly in
the past century. The subject of color measurement can
be communicated more clearly to new generations of
students if it is cast in modern mathematical concepts.
Second, many points that are obscure or difficult in tra-
ditional treatments are much clearer if a slightly more
abstract standpoint is assumed. . . . Many blind alleys
can be avoided if strings of equations are replaced by
simple abstract arguments. Thirdly, one obtains a new
perspective on the interrelation between color measure-
ment and color theories. This makes it much easier to
survey the plethora of starting points for various extant
color systems or theories, and to formulate more clearly
some of the main unresolved empirical problems in color
perception. (p. 283)

Just as the exposition provided by Krantz
has already proved useful in understanding
color matching, I believe that the new ex-
position for color-difference measurement
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has already had certain benefits. The alge-
braic description emphasizes the crucial as-
sumptions required to test whether an im-
portant class of metrics may be applied to
discrimination.

I develop the formal notation with the fol-
lowing argument in mind: The color-match-
ing theorem includes two kinds of results.
First, we may map lights to the points of a
vector space in a way that captures both the
psychological relationship of metamerism
and the additivity properties called Grass-
man’s laws. This result is called the repre-
sentation result. Second, all linear transfor-
mations of the vector space are equivalent
in the sense that any linear transformation
of the space will preserve both the meta-
merism relationship and the additivity re-
lationship. This result is called the unique-
ness result. .

Together these results prompt the follow-
ing question: Is there a distance formula for
color discriminability with the property that
small color discriminability may be pre-
dicted by the vector difference between two
lights? This question includes as a special
case the examples listed above where the
distance formula is Euclidean. Before con-
sidering the general question, I develop the
theory for this important, special case.

Invariances Across Linear
Transformations

Suppose that when the observer is adapted
to a light, a, there exists a set of basis co-
ordinates in which small color differences
may be represented as Euclidean vector dis-
tances. Let the space satisfying this property
be denoted as V, where the subscript denotes
the point in space from which the discrim-
inability of nearby points may be measured
by Euclidean distance. In this definition the
color matching coordinates, which we refer
to as C, are a linear transformation of the
space V,, but the metric properties of dis~
criminability only hold for a small region of
the space, near the adapting point, a. We
denote the linear transformation that maps
the coordinate system V, into the coordi-
nates of C as

AV,— C,
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and we denote the action of 4 on a vector,
V(a), as V(a)A. We may treat A4 as a three
by three, nonsingular (i.e., possessing in-
verse) matrix. .

As a computational example, in the space
V. we measure the Euclidean distance be-
tween two not very different row vectors, a
and a '+ 4, by first computing the vector
difference, V(§), and then taking the inner
product of the row vector V(8) and its trans-
pose (column vector) V(8)"

ds? = [V(a'+' 8) — V(a)]-
[V(a'+' ) — V(a)]
= V(3)- V(8)' \
=2 di’. (5)
i
The symbol “-” refers to inner product,
whose definition is Equation 5, and the su-
perscript, t, refers to the transpose operation.
In the case of row vectors, such as V(8), V(8)!
is a column vector. In the case of a square
matrix, A4, each entry a;; is replaced by the
entry a;.
Notice that this formula depends only on
the vector differences

V(a'+' §) — V(a).

The vector V(8) maps into the vector V(8)A4
of color-matchir}g space. Therefore, in color-
matching space the distance between two
points, a and g '+ § will be

ds? = V(8)A4- V(8)A4"
= V(8)AA'V(5)".

In the coordinate system following the trans-
formation by A, the metric is not Euclidean
but has the slightly more complex formula
in Equation 6. The matrix AA4"' will be sym-
metric, nonsingular, and positive definite.
What is important about such matrices is
that any such matrix, G = AA', defines a
mapping from a vector space into the real
numbers via Equation 6. When this mapping
is explicitly written out in terms of the coef-
ficients of the matrix G = 44" whose ele-
ments are g, we have the formula

ds* = Z gij(di)(dj),

1

(6)

(7
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where d, is the ith entry of the vector V().
-This formula is referred to as the line-ele-
ment formula because it characterizes the
(linear) distance between points in a small
(elemental) region of space. Theories of
color distances are, therefore, often referred
to as line-element models. Conventionally
(see Wyszecki & Stiles, 1967), this formula
denotes the starting point for the search for
a color metric, and the goal of the line-ele-
ment theory is to define the coordinates gy
subject only to the restriction that the choice
of coordinates lead to a formula that satisfies
the metric axioms. This condition is some-

times described as the condition that the

matrix of elements g; be positive definite
(see MacLane & Birkhoff, 1967). In the
event that g, = AA", as developed here, this
condition will necessarily be met.

METRIC THEOREM. The mapping d:V X
V — Re defined by d(x, y)>=(x~ y)
AA(x — y) for A, a nonsingular matrix, is
a distance measure.

Proor: We have d(x, x) = 0 and d(x,
) = d(p, x) by inspection of the formula.

We need only demonstrate, therefore, the .

triangle inequality:
d(x, z) < d(x, y) + d(y, z).
Define the operator (x, y) as
(x,y) = xAA'.

In this notation the triangle inequality is the
assertion that

(x—z,x =2 = ((x =y, x = y))'/?
+ (<y -2,y - Z>)I/2.

If welet u = x — y and v = y — z, then this
equation is equivalent to

Cu+ v, u+ 0Y < Cuy ) + (v, 0)V2,

Because the operator () is bilinear, that
is, from its definition (x + y, v) = (x, v) +
{y, v), and similarly for the right-hand vari-
able, we may write

{u+v,u+0)
= (u, u) + 2{u, v) + (v, V).

Note that (u, v) is the square of the inner
product of two vectors in the space obtained
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by transforming V via the linear transfor-
mation 4. We may apply the Schwarz in-
equality, which asserts that

{u, vy < ((u, u)'7?) - (v, v)'7?),
50 that by substitution
{u+v,u+v)
< (u, u) + 2{u, u)'*(v, v)'?
+ (v,' v) (Schwarz inequality)
= ({u, u)'? + (v, V)2,

which completes the proof.

From this theorem we learn that if color-
matching space is a linear transformation of
a special space, V, where color discrimina-
bility may be described as the Euclidean
metric, then color differences in color-
matching space may be described by the for-
mula in Equation 7. A standard theorem in
linear algebra is the converse of this state-
ment: If color differences can be measured
by a formula such as in Equation 7, then
there exists a linear transformation of the
space such that distances may be measured
using the Euclidean formula (see MacLane
& Birkhoff, 1967, p. 377 et seq.). The result
of this theorem is to assert that the distance
formula (Eq. 7) is an invariant across linear
transformations of color space when there
is at least one transformation in which the
distance formula is Euclidean.

A second invariant follows from a consid-
eration of the properties of this distance
metric. As I mentioned earlier, the line-ele-
ment distance measure depends only on the
difference between vectors. Notice that A
transforms the vectors V(a) and V() with
the property that V(a) — V(b) = V(4) into
new vectors, V(a)A4 and V(b)A4, whose dif-
ference is V(8)A. Thus, lights with equal
vector differences when represented by V
will have equal vector differences after the
transformation by A into the representa-
tion VA.

We can make use of this fact in the fol-
lowing way: Suppose there exists a color
space, V, in which the distance formula for
discriminability depends only on the vector
difference of the two lights to be discrimi-
nated. In such a space equally discriminable
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lights are those with equal difference vectors.
If the color space in color-matching coor-
dinates is a linear transformation, via the
mapping A of the space V, then pairs of
points whose difference vector is V(8) in the
space V will have a difference vector V(8)A
in the space defined by the color-matching
coordinates. Therefore, pairs of points that
are equidiscriminable, that is, separated by
a constant amount V(é) in V, will be rep-
resented by pairs of points that are separated
by a constant amount V(§)A in color-match-
ing coordinates,

We have just proved the following
theorem,

PARALLELISM INVARIANCE THEOREM.
First, we define two subsets; L and L', of a
vector space as parallel if and only if there
exists a translation,

T:V(a) — V(a) + V(constant),

that maps the elements of L onto the ele-
ments of L.

Now consider a set of lights L = {a} to
each of whose members we associate a sec-
ond light, a '+' i(a)*é where i(a) is the in-
tensity of the light 8 that permits the sub-
jects to just noticeably discriminate light a
from light a '+' i(a)*d. We define the set
L' = {a'+ i(a)xs}.

We may conclude that if discriminability
depends only on the vector difference of the
lights, then the set L' is parallel to the set
L when these sets are represented as vectors
in any linear transformation of color space.
As a special case, note that if L is a line in
color-matching coordinates, then L' is a line
parallel to L. .

This theorem is stated in terms of the en-
tire color space; however, because of adap-
tation we do not expect that equidiscrimin-
able lights will fall in parallel sets for
arbitrarily large regions of color space.
Rather, parallelism should hold for a re-
stricted range of lights—those that do not
perturb the adapted state.

3
Summary of Results

I want to emphasize three conclusions.
First, the treatment here does not single out
any subset of color space as privileged with
respect to any other subset of color space.
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This is different from the usual treatment
(see Boynton, 1980) where theories of chro-
matic discrimination are developed for the
special case of lights falling within a so-
called equiluminance plane. This plane is
defined by an empirical procedure—flicker
photometry—whose relationship to the color-
matching experiment is not yet well under-
stood.

The restriction of working within the
equiluminance plane is replaced by the re-
striction of using test lights sufficiently weak
so that the adapted state of the observer does
not vary. In adopting this assumption we
have followed the approach of Stiles (1946,
1978) in his two-color threshold measure-
ments and associated line-element model. A
question that will arise is what is meant by
small. 1 defer this issue to the next section.

Second, notice that there is no essential
difference between line-element formulas for
distance and the Euclidean formula for dis-
tance except for a renaming of the coordi-
nate system. The Euclidean distance for-
mula becomes Equation 7, the line-element
distance formula, under a linear transfor-
mation of the coordinate system. And, in
turn, the Euclidean distance formula is but
a special case of Equation 7, which we there-
fore treat as an invariant across linear trans-
formations.

Finally, I emphasize that a general in-
variant across linear transformations is par-
allelism. Parallelism refers to sets of vectors
that differ by a constant vector. If there ex-
ists a color-metric space for:discriminability,
V, where the discriminability of lights de-
pends only on their vector difference, lights
represented by parallel sets will be equally
discriminable from one another. Because
parallelism is invariant under linear trans-
formations, these sets of equidiscriminable
points will remain parallel if the color-
matching coordinate system is a linear trans-
formation of the space V. Furthermore, if
the coordinate system of color-matching
space is (locally) a linear transformation of
a vector space V, where color discriminabil-
ity can be measured by vector differences,
then equidiscriminable lights will (locally)
form parallel sets in the coordinate system
of color-matching space. I describe a test of
this hypothesis in the next section.
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A Test. of Vector Representations and the
Adaptation Hypothesis

Suppose an observer gazes at a large, uni-
form adapting field. The purpose of this field
is to fix the observer’s state of adaptation.
We introduce a weak perturbation of the
observer’s visual system by presenting a ped-
estal flash, call it light a (see Figure 3). In
color space we may think of the background
light as determining the region of color space
in which small discriminations are per-
formed. The pedestal is treated as a small
vector whose direction is defined by the chro-
maticity of the pedestal and whose length
is defined by the intensity of the pedestal.
We assume that pedestals near threshold do
not disturb the adapted state of the observer.
For this reason we consider near-threshold
pedestals to be small. As we increase the
intensity of the pedestal, but not so far as
to disturb the observer’s state of adaptation,
the size of the perturbation due to the ped-
estal vector will increase. As the intensity,
k, of the pedestal flash, a, grows, the ob-

a) Spatiat
f——|0"——
background
pedestai and test
,' = k |+I .
//‘// *0 %8
™ fixation points
b} Temporal

pedestal and ftest

- oo

hro ¥ %3 pedestal = kxa
Al I Al |
1 =200 ms

tone

Figure 3. (a) Spatial arrangement of the stimuli for the
pedestal experiment, (The test and pedestal were pre-
sented on the center of a large background. Both the
test and pedestal were 1° in diameter.) (b) Temporal
arrangement of the stimuli for the pedestal experiment.
(The pedestal plus test occurred in either the first or the
second interval, with equal probability. The pedestal
alone occurred in the other interval. The stimuli were
presented simultaneously for a duration of 200 ms
[milliseconds). Each interval was preceded by a short
warning tone.)
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mixture = ( kna) '+ (in3)

k wa (pedestal)

local region of color space

Figure 4. Vectors in a local region of color-matching
coordinates for the pedestal (kxa) and the test (i*$§) and
for the mixture of the test and pedestal. (As the inten-
sity, k, of the pedestal is increased, but the intensity of
the test, /, is held constant, the resultant vector kxa
'+ j»6 forms a line that is parallel to the line formed
by the pedestal light itself, kxa.) ;

server’s visual system will be moved out
along a line in color space, defined by k«a.
A line parallel to k%a may be constructed
by adding a very small second component
to the pedestal flash. Call this test flash 4.
The points kxa '+’ & will form a second line,
parallel to the line kxa (see Figure 4).

If the adaptation hypothesis is correct,
then there exists a linear transformation of .
this region of the color-matching coordinates
to a space where vector differences may be
used to compute discriminability. By par-
allelism invariance the lines k*a and kxa '+’
& will be parallel in any linearly transformed
space. Because the vector differences of the
points kxa and k«a + & are equal for all
values of &, the lights k+a and kxa '+’ & will
be equally discriminable for small values of
k and for all choices of the pedestal, a.

A second way of stating this prediction,
which is more convenient for empirical test-
ing, is the following: Fix an intensity, k, of
the pedestal flash. Measure the intensity of
d—call it i(kwa)—that is required in order
to render kwxa '+' i(kxa)*$ just barely dis-

- criminable from kxa. The adaptation hy-

pothesis asserts that as k varies k*a and
kxa + i(kwa)*é will be parallel lines in any
linear transformation of the color-matching
coordinates, This is equivalent to saying that
i(k=a) is constant for small k.

Loftus and I set out to test this hypothesis
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Figure 5. Results of the pedestal experiment. (The hor-
izontal axis plots the intensity of the pedestal flash in
units of physical intensity: log quanta per square degree
per second. Each curve represents the data from a ped-
estal of a different wavelength. The vertical axis plots
threshold intensity to the 670-nm test flash. In many
instances the presence of the pedestal reduces the
amount of energy required to detect the presence of the
test flash. Pedestal thresholds were [SE), and pedestal
wavelength in brackets; units are log quanta deg™*sec™']
7.2 [.04; 650 nm], 6.2 [.03; 590 nm], 6.0 [.02; 520 nm],
and 6.0 [.11; 460 nm}, respectively. Open and filled
circles indicate different observers.)

(Wandell & Loftus, Note 1). Examples of
data we collected are shown in Figure 5. For
these particular measurement conditions the
background field was 10°, yellow (580 nm),
and moderately intense (8.931 log quanta/
deg™?sec™"). The pedestal, light a, was a 200
msec, 1.1° spot viewed by the central fovea.
The pedestal wavelength is the parameter of
the separate curves, which are arbitrarily
displaced relative to the vertical axis. The
intensity of the pedestal is indicated on the
horizontal axis, and the threshold values of
each of the pedestals is indicated on the
curves themselves.

The test flash, 8, was a 670 nm, 200 msec,
1.1° flash superimposed on the pedestal. The
observer’s task was to decide in which of two
temporal intervals the test flash was pre-
sented on the pedestal, that is, to discrimi-
nate pedestal from test flash plus pedestal.
The intensity of the test flash at threshold,
for each of the various pedestal wavelengths
and intensities, corresponds to the value
i(k=a). The prediction of the adaptation hy-
pothesis is that this value should be constant
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for pedestals near threshold visibility. As is
evident from the curves, there are systematic
departures from this prediction.

These results are inconsistent with the
adaptation hypothesis. We must, therefore,
return to re-examine the assumptions of the
adaptation hypothesis. Two kinds of issues
may be raised.

First we may ask whether the empirical
test of the adaptation hypothesis is an ade-
quate operationalization of the theory, Sev-
eral kinds of objections are possible. For ex-
ample, the color-matching experiment takes
place under essentially steady state condi-
tions. No lights are flashed. However, in the
present ' test of the adaptation hypothesis,
derived from measurements based on the
color-matching experiment, we use flashed
pedestals and tests. Although 200 msec is
comparable to the duration of a fixation,
perhaps we cannot treat these 200 msec
flashes as comparable to the steady fields
used in the color-matching experiment. A
second objection is that in the Wandell and
Loftus (Note 1) experiments threshold judg-
ments were made over time not space. In the
usual color-matching experiments, judg-
ments are made across the border of the
bipartite field, rather than across time as in
the two-interval, forced-choice design. This
is another reason to object to the experiment.

A further objection may be raised: Are
the intensities of the pedestal flash small in
the sense required by the theory? There is
no objective means of answering this ques-
tion. Notice, however, that the threshold of
the pedestal flashes alone (indicated in the
figure caption) are below threshold when
deviations from the prediction begin. This
means that if the theory is correct, it can
only apply to discriminability of lights that
are invisible.

If the pedestal experiments are viewed as
adequate tests of the theory, the possibility
of achieving any metric representation based
on vector differences is placed in doubt. In
view of the results of the pedestal experiment
(as well as the closely related results of
Nachmias & Kocher, 1970; Nachmias &
Sansbury, 1973; Whittle & Swanston, 1974),
one must find new justifications for the ad-
aptation hypothesis. It is not premature,
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therefore, to consider alternatives and ex-
tensions of the geometric theory. I consider
one alternative form of representation in the
following section.

Alternative Conceptions

The adaptation hypothesis is but one prin-
ciple that has served to guide the develop-
ment of a color metric. A second conception,
complementary to the adaptation hypothesis
though seldom distinguished from it, is a
hypothesis I will call the Auctuation hy-
pothesis of chromatic discrimination. Var-
ious forms of this hypothesis have been
stated and discussed (see Buchsbaum &
Goldstein, 1979; Kranda & King-Smith,
1979; Trabka, 1968; Vos & Walraven, 1972a,
1972b).

The fluctuation hypothesis assumes that
color discriminability is limited by noise
(either quantal or physiological) that con-
taminates the decision process. Fluctuation
theories incorporate the noise as an integral
part of the representation of colored lights.
Thus, although a theory consistent with the
adaptation hypothesis may suppose the ex-
istence of noise, this noise is viewed as ex-
ternal to the representation and not a part
of color science per se; rather, it is an an-
noyance that must be confronted.

Formulas derived from the fluctuation
hypothesis often have the same functional
form (Eq. 7) as the formulas derived from
the adaptation hypothesis (see Buchsbaum
& Goldstein, 1979; Vos & Walraven, 1972b),
but the principles that give rise to the for-
mulas are quite different. For example, Vos
and Walraven (1972b) derive a distance for-
mula consistent with Equation 7 from prin-
ciples of quantal fluctuation. On this deri-
vation, however, the weighting coefficients
g; are determined by statistical signal-
to-noise considerations. Specifically, the
weighting coefficient assigned to a term is
larger when that term reflects the action of
a mechanism with a larger signal-to-noise
ratio. Therefore, the meaning of the notation
is entirely different when the derivation is
based on the fluctuation hypothesis rather
than the adaptation hypothesis.

If the fluctuation hypothesis is correct, the
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physical process of discrimination acts very
differently from the physical process that one
would suppose based on the adaptation hy-
pothesis. Because the signal-to-noise ratio of
different mechanisms depends on the test
lights being compared as well as the state
of adaptation, the coefficients g;; will depend
on the test lights that are being discrimi-
nated. Even in a fixed state of adaptation,
the weight assignments, g, will vary de-
pending on the signal-to-noise properties for
the particular test stimuli. On the adaptation
hypothesis the weight assignments, g;;, de-
pend only on the observer’s adapted state.

Because the interpretation of the symbols
in Equation 7 is different when derived from
the fluctuation hypothesis as compared to
the adaptation hypothesis, tests of the fluc-
tuation hypothesis require different sorts of
experiments. I now describe the principles
of fluctuation hypotheses more completely
so that I may later describe testable prop-
erties of models based on the idea of fluc-
tuation.

The Fluctuation Hypothesis

Trabka (1968), Vos and Walraven (1972a,
1972b), and Buchsbaum and Goldstein
(1979) have discussed models in which chro-
matic discriminations are characterized as
dependent on the information in three phys-
iological channels, corresponding to the three
receptor types or simple transformations of
the receptors. Each channel has (Poisson)
noise characteristics that limit discrimina-
bility of chromatic stimuli. The source of this
noise may be the quantum fluctuations of
the light itself or noise inherent to the phys-
iological mechanisms. I will describe the
work of Buchsbaum and Goldstein (1979)
because their presentation is representative
of the fluctuation theories.

Buchsbaum and Goldstein (1979) treat
the receptors as the three noisy channels that
limit discriminability. The rate parameter
of the Poisson process on each channel de-
pends on the light presented to the observer
and is computed via a linear functional (de-
rived from the receptor spectral sensitivity
curve) on the space of wavelength distribu-
tions, A particular set of linear functionals—
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the estimated spectral sensitivities of the

three receptors from Thomson and Wright

(1953)—is used for the purpose of calcula-
tions, though this-is not crucial to their ap-
proach.

To evaluate this framework Buchsbaum
and Goldstein (1979) keep the assumptions
listed above fixed. Attention is focused on
the selection of decision statistics, computed
from the responses of the three channels, and
on which the maximum-likelihood calcula-
tion is performed. Examples of two different
decision rules are (a) counting the number
of events in a fixed interval on each channel
(see also Luce & Green, 1972; McGill, 1967,
Wandell, 1977) and (b) estimating the total
interevent interval for a fixed number of
counts (Luce & Green, 1972; Wandell,
1977).

Using these and closely related decision
statistics, Buchsbaum and Goldstein (1979)
show that traditional line-element formulas
(Eq. 7), derived from geometric models
based on the color-matching experiment, are
equivalent in mathematical form to the dis-
criminability predictions derived by choos-
ing- different decision statistics in the maxi-
mum-likelihood model. This had been shown
in the special case of the Stiles line-element
by Trabka (1968). Buchsbaum and Gold-
stein (1979) extended the result to include

other line-element models. It is important to -

note that equivalence of the mathematical
form for predictions of color discrimination
does not imply that the models are equiva-
lent with respect to all possible experiments.

In the maximum-likelihood approach,
color discriminability decisions are modeled
as follows: On each trial the subject is pre-
sented a stimulus and asked to decide whether
the stimulus is one of two possible lights.
One assumes that the observer has knowl-
edge of the probable effects of the two lights.
In particular, each light has some probabil-
ity of causing the observer to receive a sense
impression, S, from the space of all possible
sense impressions, X (i.e., S is an element
of X). From the color-matching experiment
we may assert that any sense impression may
be represented by a three-dimensional vector
whose coordinates correspond to the values
of the decision statistics computed on the
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three channels. For each light, a, there is a
probability that it will give rise to the par-
ticular impression, S. Call the likelihood that
the observer has sensation 'S given light
a, L(S|a). )

From the sensation, S, observed on the
experimental trial, the observer computes
the relative likelihood that-the observed
sense impression is caused by light a versus
the likelihood that it is caused by light b.
This estimate is made as

L(S|a)
L(S|b)

If this value is sufficiently large, the observer
responds that the light was a, and otherwise
he or she responds that the light was b.

For convenience I will refer to models de-
rived from the fluctuation hypothesis as sta-
tistical models. Models derived from the ad-
aptation hypothesis will be called geometric
models.

= likelihood estimate.

Comparison of Statistical and Geometric
Models

An important difference between the geo-
metric and statistical models is the following:
In the geometric models lights are identified
with points (sensations) in a three-dimen-
sional coordinate system. The-outcome of an
experiment must be explained by the rela-
tionships among the points assigned to the
lights. In the statistical models lights are
identified with functions defined across the
space of all points (sensations). Thus, in the
Buchsbaum and Goldstein (1979) formula-
tion, lights are not defined by mapping into
specific sensory effects, S. Rather, lights are
assigned to likelihood functions L(S|a), de-
fined across the space of all sensory impres-
sions. This is a much more general descrip-
tion of a light than is allowed in the geometric
model. To emphasize how profound this dif-
ference is, notice that in the geometric model
the number of parameters defining the effect
of a light is three, namely, the coordinates
of the light. In the statistical models lights
are described by an infinite list of numbers,
namely, the values taken on by their likeli-
hood distributions across the entire space.

There is a cost to this more general def-
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inition. When we combine two lights by
forming the mixture of light a with light b
as a '+ b, we cannot write down a simple
relationship between their associated repre-
sentations, Thus, if we know the distribution
L(S|a) and the distribution L(S|b), we can-
not always find a simple formula of the form

L(Sla'+' b) = F{L(Sla), L(S|b)}.

Rather, we must return to first principles in
order to define the likelihood of the mixture.
In some instances the rule will be simple, in
others not. This, too, is different from the
vector-representation theories because the
color-matching theorem assures that the vec-
tor representation of @ '+’ b is given by

V(a'+ b) = V(a) + V(b).

A further difference demonstrates an ad-
vantage of the statistical form of represen-
tation. Let us consider the likelihood deci-
sion rule where the subject is unbiased such
that

It L(Sla) >L(S|b), respond a

<L(S|b), respond b’

Let us further simplify the arguments by
supposing that prior beliefs are already in-
corporated into the likelihood functions and
that we may treat the likelihood functions
as if they were probability densities over the
space of outcomes, X. With the unbiased
decision rule, the probability of correctly
discriminating @ and b, which I denote as
pla, b), may be computed in the follow-
ing way: ‘

pla, b) = f [P(a)L(SIa)P(respond alS)

+ P(b)L(S|b)P(respond b|S)],

where P(a) is the probability of presenting
a, P(b) is the probability of presenting b. If
we let P(a) = P(b) = .5 for convenience and
we define the subset, 4, where the subject

responses “a” via

A = {S: respond a = S: L(S|a) > L(S|b)},

we can simplify the expression to the form

pla, b) =%[ [ vsr+ | _AL(s|b)].

295

This formula has the property that when a
and b are equal, the probability of choosing
a rather than b is 1 /2. When the distribution
L(S|b) is zero for all values of S where
L(Sla) is greater than zero, p(a, b) is equal
to one (i.e., the lights are perfectly discrim-
inable).

We have assumed that L(S|b) is a density,
so the integral over X of L(S|b) is unity. We
may further simplify to

pla,b) =3 [ [ wsia - L(S|b)] =3

We conclude that all lights a, 4/, b, ¥ such
that

L LL(Sla) — L(SI5)]
_ f [L(SIa) — L(SIB)]  (8)

are equally discriminable. The functional
computation on each side of Equation 8§
plays a role equivalent to the computation
of the vector difference in the geometric
model. We define, therefore, the distance
between two points, d(a, b), via

d(a, b) = f [L(Sla) — L(SIB)].

We use the term distance to describe the
computation of d(a, &) because this function
satisfies the metric axioms. To see this notice
that the set 4 is precisely the set where
L(S)a) — L(S|b) > 0. Therefore, d(a, b) will
always be positive. By definition, p(a, b) is
symmetric and, therefore, d(a, b) will be. To
check the triangle inequality notice that

d(a, ¢) = f [L(Sla) — L(Slc)]
- f [L(Sla) — L(SIB)]
N L [L(SI) ~ L(SIe)]

- d(a, )+ [ 1L(8IB) - LSl

Recall that B is precisely the set of points
where L(S|6) — L(S|c) > 0 so that integrat-
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ing over any other set must yield a value
smaller than integrating over the set B.
That is,

[ sy - Leston

< [ 12(ste) - £(sten = as, o

We may substitute the above in the previous
equation, changing the equality sign to an
inequality sign and write

d(a, ¢)
< d(a, b) + d(b, ¢) (triangle inequality).

Let us summarize our characterization of
the statistical theories representation of dis-
crimination. We can do this by contrasting
the statistical representation with geometric
models.

Properties of geometric models:

1. Lights are assigned values as three-di-
mensional vectors.

2. The assignment of vector quantities is
additive with respect to the mixture of lights
in the sense that the point that represents
the light a '+' b is V(a) + V(b).

3. Pairs of equally discriminable lights
are those quadruples (a, &) and («', &) such
that V(a) — V(b) = V(a') — V(¥).

Properties of statistical models:

1. Lights are assigned values as functions
over a three-dimensional space.

2. There is no additivity of the represen-
tation with respect to light-mixtures because
there is no simple relationship between rep-
resentations of a, b, and a '+’ b.

3. Pairs of equally discriminable lights
are those quadruples (a, b) and (&, b') where

| 1tsia) - wsio)
- [ s - Lisimn,

The question now arises whether statisti-
cal models may explain the results of color-
discrimination experiments. In the next sec-
tion I will consider experimental tests of the
adequacy of statistical models. I will discuss
the ways in which their structure differs from
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that of geometric models and the ways in
which their structure is related to other phy-
chological measures of similarity and choice.

Relationship to Other
Psychological Theories

Two kinds of issues arise in evaluating the
geometric and statistical formulations. First
are the theoretical issues concerning the im-
plications of the representational forms
themselves. In this section I will ask what
is the relationship to other schemes for mea-
suring the psychological structure imposed
on physical stimuli. I will treat the problem
of defining cardinal psychological dimen-
sions when geometric representations are
used. -

Second, I will begin an inquiry into further
properties of statistical representations that
will permit us to test their adequacy. Be-
cause vector theories of color discrimination
have been studied for many years, the re-
lationships between these models and em-
pirical procedures has already received some
attention. Statistical models have not re-
ceived as much study. We must, therefore,
develop empirical procedures to serve as the
foundations for such a theory.

Geometric Representations

Psychologists have attempted to find geo-
metric representations of various stimuli—
words, emotions, attitudes—for more than
20 years (see Shepard, 1980, for a review of
much of this work). One important goal of
some of this work is to define cardinal di-
rections, or principal psychological axes,
that characterize the effect of stimuli on peo-
ple. Surprisingly, the general geometric
model, based on the line-element metric, in-
cludes a well-defined notion of axis or di-
mension only in certain special cases.

To understand how a model may fail to
allow a definition of cardinal axes, it is useful
to consider a special model where cardinal
directions are well defined—Helmholtz’s
color metric. Helmholtz assumed that the
cardinal directions of color space are defined
by the receptor primaries. This is reflected
by the fact that the only transformations of
color space incorporated into Helmbholtz’s
metric were transformations that stretched
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the space to compensate for Weber’s law,
applied separately to the receptor classes.
This is represented in the metric by the fact
that the matrix of coefficients, G, in Helm-
holtz’s line element is a diagonal matrix
whose entries are

0 if i not equal to j

8y x; otherwise

where x; is the rate of quantum absorption
in the ith receptor class. The transformations
of space, therefore, are merely transforma-
tions that stretch the cardinal axes to com-
pensate for changes in sensitivity.

In terms of psychological assumptions,
this means that for all stimulus comparisons
the directions defined by the receptor spec-
tral sensitivities have a special significance.
The receptor spectral sensitivities are the
directions along which functions of differ-
ences between stimuli are summed. In Helm-
holtz’s color metric the directions along
which small differences between stimuli are
added do not vary when different stimuli are
compared or when the state of adaptation
is changed. It is therefore sensible to single
out the receptor spectral sensitivities as hav-
ing special psychological—and in this case
physiological—significance.

I suggest that what is meant by cardinal
directions generally in psychological scaling
is precisely those directions along which
small signals are summed when distances

between stimuli are measured. Notice that’

when we consider metrics whose represén-
tation includes nonzero off-diagonal entries,
g the basis vectors on which addition of
small differences occurs will vary as the g,
vary. Guth et al.’s (1980) model is an ex-
ample of a line-element model with no car-
dinal directions because there is no set of
axes across which small measures are always
summed in order to estimate distance. The
directions across which small differences are
summed varies depending on the state of
adaptation during the measurement. In gen-
eral, privileged axes exist only when the line-
element transformation, G, contains only
diagonal entries. If arbitrary linear trans-
formations, G, are allowed, the line-element
model does not permit the definition of a
special set of axes.

297

We conclude, therefore, that there exist
line-element representations of stimuli that
do not permit the definition of privileged
axes. Line-element metrics are examples of
representations that contain local metric
properties without a concomitant definition
of cardinal axes that characterizes a privi-
leged coordinate system throughout the
space. What we have learned, then, is that
the ability to measure does not imply the

.ability to identify psychological dimensions.

Statistical Representations

I now discuss two aspects of statistical
representations. First, I will discuss the re-
lationship between the statistical represen-
tation and two models of choice (Luce, 1959;
Tversky, 1972a, 1972b). Other choice the-
ories, notably those based on Thurstonian
scaling (e.g., Marley, 1971), are related to
the statistical representation, but these mod-
els usually depend importantly on the as-
sumption that the stimuli may be charac-
terized as random fluctuations of a one-
dimensional variable (Marley, 1971). Be-
cause color discrimination depends on a mul-
tidimensional encoding of the stimulus, the
Thurstonian theories are not of great help
in elucidating the statistical representations.

Second, I will speculate on the properties
that a complete, statistical representation
will have. In this section I-again take up the
problem of defining psychological dimen-
sions.

Properties of statistical representations.
For ease of discourse imagine that the effect
of a threshold light on the observer may be
characterized by a sensation, S, that is an
ordered pair rather than an ordered triple.

‘This will not result in any loss of generality

in our attempt to describe properties of the
statistical representation. The ordered pair
characterizes the stimulus effect on two re-
ceptor classes. Further, imagine that in a
discrimination experiment the observer has
a likelihood, L(Sla), that an ordered pair,
S, will arise given a stimulus, a. For each
stimulus we can draw a picture of its like-
lihood function where the horizontal plane
contains the possible sensations, S, and the
height of the function above the plane is the
likelihood of observing the outcome in the
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L(sl)

Figure 6. Schematic diagram of the functions describing
the likelihood of observing a sensation, S = (sy, 5,), due
to one of two stimuli, represented by the separate peaked
distributions. (The horizontal plane refers to the stim-
ulus sensations and the vertical axis refers to the degree
of likelibood.)

horizontal plane. The maximum-likelihood
rule assigns responses to sensations in dif-
ferent regions of the horizontal plane by the
rule that the stimulus whose likelihood func-
tion is highest over that sensation is the one
the subject selects as the response (see Fig-
ure 6).

This decision rule effectively partitions the
horizontal plane into regions associated with
the different responses. We may summarize
the likelihood rule by a simpler, planar pic-
ture: The effect of a stimulus on the observer
will be to generate a pattern of sensations
that are distributed in the horizontal sen-
sation plane. It is convenient to stretch the
sensation plane so that the probability of a
stimulus causing a sensation in any small
region of the stretched plane is equal. The
nature of the stretching may be complicated
(i.e., nonlinear), but it is possible. We can
then partition the new plane into two re-
gions, corresponding to the region in which
the likelihood function L(S|a) is higher and
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the region in which L(S}b) is higher. For a
single experiment the probability of respond-
ing light “a” is equal to the probability of
randomly selecting a point on this plane and
discovering that the point is in area 4. No-
tice that the probabilities we are computing
here are choice probabilities not the proba-
bility of responding correctly, which we com-
puted in the previous section (see Figure 7).

Consider the outcomes of two experiments
where the subject is shown lights a and b
and presented with a series of stimuli and
asked to decide whether the presented stim-
ulus was light a or light 5. He is then shown
lights b and ¢ as alternatives and presented
the same series of stimuli (up to a permu-
tation of order) and asked to decide whether
the presented stimulus was light b or light
¢. There will be two partitions of the hori-
zontal plane: one that divides it into response
areas A and B and a second that divides it
into B and C. We ask whether from knowl-
edge of the paired choice probabilities be-
tween a and b and the paired choice prob-
abilities between b and ¢ can we restrict the
possible choice probabilities between a
and ¢?

In the paired comparison experiment let
P(S in {4 > B}) denote the probability that
the sensation S occurs in the region of the
graph denoted by A, when the alternative
choice is stimulus b. The probability that the
subject responds “@” in a choice between a
and c is at least as great as the probability
that the stimulus outcome falls in a region
where the likelihood of a dominates b[L(S|
a) > L(S|b)] and the likelihood of b domi-
nates ¢[ L(S]|b) > L(S|c)]. This is because the
region of the sensation plane where a dom-
inates b and b dominates ¢ is but a subset
of the region where a dominates c. Thus, P(S
in {4>C})=P(S in {4>B and B>
C}). By simple rules of probability we can
rewrite this as

PSin{A>C})=1~-P(Sin {B> Aor C> BY})
=1-P(Sin{B> A})—P(Sin {C> B})+ P(Sin {B> A and C> B})

=1—P(Sin {B> A4}) — P(Sin {C> B)).

(9)

Equation 9 represents a constraint that all paired choice probabilities must satisfy when
the stimulus presentation probabilities are fixed. Notice that we can rewrite Equation 9 as

P(Sin{A>C})=1—-{[1-P(Sin{4>B}]~[1 - P(Sin{B>C)H]}

=P(Sin{4> B})+ P(Sin {B> C}) -1,

(10)



COLOR DIFFERENCES

which is an extremely weak transitivity con-
dition. The weakest transitivity condition
usually considered by choice theorists is
called weak stochastic transitivity. This con-
dition asserts that if P(S in {4 > B}) and
P(S in {B > C}) are greater than one half,
then P(S in {4 > C}) is greater than one
half. Equation 10 does not imply weak sto-
chastic transitivity because when both terms
on the right-hand side are equal to one half
we are guaranteed nothing about the left-
hand term. The condition does, however,
constrain binary choice probabilities. For
example, if P(Sin {4 > B})is .75 and P(S
in {B > C}) is .75, then P(S in {4 > C})
must be at least one half.

A second constraint that must be satisfied
comes from considering increasing the stim-
ulus set from a paired choice probability to
a selection from among three alternatives.
When we introduce a third likelihood func-
tion into the graph, it will not change the
ordering of likelihoods between stimuli @ and
b at any points. The effect of introducing a
third alternative is to assign some of the pos-
sible stimulus events, S, to the new choice
¢, or leaving them assigned as they were. In
terms of the partition this is like laying down
a third set, on top of the fixed sets 4 and B,
that removes some of the area from 4 and
some of the area from B, putting them in set
C, but does not change the remaining areas.
This may change the relative probabilities
of choosing a and b, but the absolute prob-
ability of responding “a” or responding “‘b”
cannot increase when ¢ is introduced. This
condition is called regularity, and it further
constrains what may happen in choice ex-
periments if the statistical representation is
valid.

What remain unknown are the necessary
and sufficient conditions to ensure the exis-
tence of a statistical representation via like-
lihood functions, Especially, can we discover
a constructive procedure that will permit us
to construct the likelihood functions of the
representations?

It is instructive to compare the properties
of the statistical decision rules with two
choice models that have a natural set theo-
retic interpretation: the elimination-by-as-
pects model of Tversky (1972a, 1972b) and
Luce’s (1959) choice model. The elimina-
tion-by-aspects model associates sets of as-
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8= {L(sib)>L(slal}

A= {L(Sla) >L(SIb)

8

Figure 7. Schematic of the horizontal, sensation plane
where the 5, and s, axes may have been stretched so
that the probability of generating a sensation at any
point in the plane is equally likely. (The region denoted
by A refers to the parts of the plane where the likelihood
function associated with light a exceeds the likelihood
function associated with light 5. The region denoted by
B refers to those parts of the plane where light b’s like-
lihood function is larger than that of light a.)

pects with the offered choices much in the
way that the statistical decision model as-
sociates sets of sensations with the offered
choices. The elimination-by-aspects model
differs from the statistical decision model in
these two ways: First, in the elimination-by-
aspects model, a new choice added to the
offered set may introduce new aspects (sen-
sations) that are not present in the other
choices in the offered set. Second, different
choices may be associated with sets that
share common aspects so that the sets of
aspects associated with the choices have non-
empty intersections.

The statistical representations differ in
both respects from the elimination-by-as-
pects model. First, the possible sensations
are not altered as different choices are of-
fered. Only changing the colored lights used
as stimuli can introduce new sensations (as-
pects). The set of sensations (aspects) is nei-
ther augmented nor decreased as new choices
are offered to the subject. Second, the sta-
tistical decision model imposes a partition
of the sensations (aspects) into disjoint sets
representing the offered choices.

Luce’s (1959) choice model is a special
case of the elimination-by-aspects model
(Tversky, 1972a). In Luce’s model different
choices are represented by sets that partition
the aspects into disjoint sets—similar to the
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statistical models here. In Luce's model,
however, the structure of the sets associated
with different choices is constrained by the
rule that the ratio of the probabilities of
choosing light a and light . .must remain
constant as new choices are offered. This is
accomplished by supposing that the intro-
duction of a new choice brings with it en-
tirely new aspects, disjoint from those al-
ready present in the original alternatives, As
I noted above, the statistical representation
does not allow new aspects to be introduced
by new elements of the offered set. In the
statistical decision model, introducing new
choices will generally cause the relative
probabilities of selecting light a or light b
to vary, violating Luce’s model.

Goals in defining a statistical represen-
tation. Because statistical representations
are relatively new in the scaling of small
color differences, it seems useful to speculate
briefly on what the goals of defining a sta-
tistical representation might be,

First, statistical representations do not im-
pose strong structure at the level of the ele-
ments of the space. We treat the possible
sensations as a set of primitives, having little
structure. The relationships among the sen-
sations themselves are not of great signifi-
cance. Stimuli are defined by distributions
across the whole set of primitives—the stim-
ulus distributions L(S|a)—and experimental
outcomes are defined by rules involving com-
putations on these distributions across all
sensations.

For example, in the case of metameric
matching the identity of two stimuli is rep-
resented by the rule that two lights are

judged metameric only if there is an identity

of the distributions L(S|a) = L(S|b). In the
case of discriminability, the rule has the
form that the discriminability of 4 and b
depends monotonically on

[ 1wista) - s

Thus, empirical observations are captured
not by relationships among points, S, but
rather by the rules defined on the likelihood
distributions associated with different stim-
uli. Thus, the dimensionality of the space of
points, S, is not a significant part of this kind
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of representation. And, as for the general
case of the line-element formulas, it is dif-
ficult to sensibly define cardinal psycholog-
ical dimensions.

What is the goal of devising such a rep-
resentation? First, for each experiment we-
would like to be able to define a rule that
characterizes the results of the experiment.
Further, across experiments, the distribuy-
tions that characterize the effects of the
stimuli, L(S]a), ought to be fixed.

Second, we would like to restrict the set
of possible operators in some principled way.
Rules concerning the class of permissible
operators ought to be defined based on our
understanding of the mechanisms of the pro-
cess under study.

Third, a new question of interest arises for
this kind of representation as compared to
the geometrical representations. What are
the relationships among the rules them-
selves? Consider the experimental problem
of measuring the identification probabilities
when a stimulus light, g, is identified from
a set of n alternative lights. This is a gen-
eralization of the operator described for the
discrimination experiment when the alter-
native set of lights contains only n — 1 lights.
The operators that characterize the observ-
ables from the various » alternative experi-
ments should be simply related to one an-
other. And the nature of this relationship
should provide us with an insight as to the
processing strategies of the human observer.

Final Remarks

Constructing an inductive color metric has
not proven to be simple. The extension of the
color-matching experiment based on judg-
ments of the identity of stimuli to discrim-
ination experiments based on judgments of
stimulus differences has forced us to recen-
sider the nature of visual function.

In studying the benefits and shortcomings
of representations of discriminability, I have
come to the following view of representation
for color discriminability. There are two dif-
ficulties with vector models: First, neural
stimulus processing is given too passive a
role. On the geometric approach a fixed set
of mechanisms is stimulated by a light, and
based on this response a fixed calculation is



COLOR DIFFERENCES

performed. If one response mechanism is
particularly strongly stimulated, then that
mechanism contributes a stronger response
only because of the stimulus effect. The ner-
vous system does not weight the channel with
the strongest signal more heavily. Statistical
decision rules are more flexible. The maxi-
mum-likelihood rule includes the case where
the nervous system weights more heavily
those elements that respond more strongly.
This will, generally, allow superior perfor-
mance. The statistical decision rules foster
the idea of an active nervous system, where
processing may be more intelligently allo-
cated to meet the stimulus conditions.

A second feature of vector models that is
attractive because of its simplicity, but is
probably unrealistic, is the implicit assump-
tion that noise in discrimination judgments
occurs because of factors external to the rep-
resentation. The vector representation as-
sumes that when two lights have equal vector
differences they will be equally discrimina-
ble. This is equivalent to supposing the ex-
istence of a noise source—a random vari-
able—that is added to the difference vector,
causing the nondeterministic behavior. If the
added noise is external to the representation
and therefore the same for all discrimina-
tions, then equal vector differences must lead
to equal discriminability. If we complicate
the vector model by permitting the noise to
vary with the vector difference, then the
noise becomes part of the representation and
the vector model becomes a statistical model.
The incorporation of randomness into the
representation is a second reason why sta-
tistical models may prove of more value in
providing an accurate measure of small color
differences.

Reference Note
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small signal linearity. Manuscript in preparation,
1982,

References

Bouman, M. A., & Walraven, P, L. Color discrimination
data, In L. Hurvich & D. Jameson (Eds.), Handbook
of sensory physiology (Vol. 7, Pt. 4). New York:
Academic Press, 1972.

Boynton, R. M. Human color vision. New York: Holt,
Rinehart & Winston, 1980.

Buchsbaum, G., & Goldstein, J. L. Optimum proba-

301

bilistic processing in colour perception. I. Colour dis-
crimination. Proceedings of the Royal Society of
London, 1979, 205B, 229-247.

Cornsweet, T. N. Visual perception. New York: Aca-
demic Press, 1970.

Friele, L. F. C. Analysis of the Brown and Brown-
MacAdam colour discrimination data, Farbe, 1961,
10, 193,

Grassman, H. Zur Theorie der Farbenmischung, An-
nalen der Physik, 1853, 89, 69.

Guth, S. L., Massof, R, W., & Benzschawel, T. Vector
model for normal and dichromatic color vision. Jour-
nal of the Optical Society of America, 1980, 70, 197-
211,

Helmbholtz, H. von. Handbuch der physiologischen Op-
tik (2nd ed.). Hamburg, Federal Republic of Ger-
many: Voss, 1896.

Hurvich, L. M., & Jameson, D. Some quantitative as-
pects of an opponent-colors theory, II. Brightness,
saturation and hue in normal and dichromatic vision.
Journal of the Optical Society of America, 1955, 45,
602-616. :

Hurvich, L. M., & Jameson, D. An opponent-process
theory of color vision. Psychological Review, 1957,
64, 384-404.

Ingling, C. R. The spectral sensitivity of the opponent-
colors channels. Vision Research, 1977, 17, 1083-
1090.

Judd, D. B., & Wyszecki, G. W. Color in business,
science, and industry. New York: Wiley, 1963,

Koenderink, J. J., Grind, W. A, van de, & Bouman,
M. A. Opponent color coding: A mechanistic model
and a new metric for color space. Kybernetik, 1972,
10, 78-99.

Kranda, K., & King-Smith, P. E, Detection of coloured
stimuli by independent linear systems. Vision Re-
search, 1979, 19, 133-746.

Krantz, D. H. Visual scaling. In L. Hurvich & D. Jame-
son (Eds.), Handbook of sensory physiology (Vol. 7,
Pt. 4). New York: Academic Press, 1972.

Krantz, D, H. Color measurement and color theory: 1.
Representation theorem for Grassman structures.
Journal of Mathematical Psychology, 1975, 12, 283~
303.

LeGrand, Y. Light, color, and vision. New York: Wiley,
1970.

Luce, R. D. Individual choice behavior: A theoretical
analysis. New York: Wiley, 1959.

Luce, R. D., & Green, D. M. A neural timing theory
for response times and the psychophysics of intensity.
Psychological Review, 1972, 79, 14-57.

MacAdam, D. L. Visual sensitivities to color differences
in daylight. Journal of the Optical Society of Amer-
ica, 1942, 32, 247-274,

MacLane, S., & Birkhoff, G. Algebra. New York: Mac-
millan, 1967.

Marley, A. A. J. Conditions for the representation of
absolute judgment and pair comparison isosensitivity
curves by cumulative distributions. Journal of Math-
ematical Psychology, 1971, 8, 554-590.

Massof, R. W,, & Bird, J. F. A general zone theory of
color and brightness vision. I. Basic formulation,
Journal of the Optical Society of America, 1978, 68,
1465-1470. (a)



302

Massof, R. W., & Bird, J. F. A general zone theory of
color and brightness vision, II. The space~time field.
Journal of the Optical Society of America, 1978, 68,
1471-1480, (b)

Massof, R. W., & Starr, S. J. Vector magnitude op-
eration in color vision models; Derivation from signal
detection theory. Journal of the Optical Society of
America, 1980, 70, 870-972,

McGill, W. J. Neural counting mechanisms and energy
detection in audition. Journal of Mathematical Psy-
chology, 1967, 4, 351-376.

Nachmias, J.,, & Kocher, E. C. Visual detection and
discrimination of luminance increments. Journal of
the Optical Society of America, 1970, 60, 382-289.

Nachmias, J., & Sansbury, R. V. Grating contrast:
Discrimination may be better than detection. Vision
Research, 1973, 14, 1039-1042.

Polden, P. G., & Mollon, J. D, Reversed effect of adapt-
ing stimuli on visual sensitivity. Proceedings of the
Royal Society of London, 1980, 210B,'235-272.

Schrodingér, E. Measurement for daylight vision. In
D. L. MacAdam (Ed.), Sources of color science.
Cambridge, Mass.: MIT Press, 1970.

Shepard, R. N. Multidimensional scaling, tree-fitting,
and clustering. Science, 1980, 210, 390-398,

Smith, V. C., & Pokorny, J. Spectral sensitivity of color-
blind observers and the cone photopigments. Vision
Research, 1972, 15, 161-171.

Stiles, W. S. The directional sensitivity of the retina and
the spectral sensitivities of the rods and cones. Pro-
ceedings of the Royal Society of London, 1939, 127B,
64-105.

Stiles, W. S. A modified Helmholtz line element in
brightness-colour space. Proceedings of the Physical
Society, London, 1946, 58, 41-65.

Stiles, W. S. Mechanisms of color vision. New York:
Academic Press, 1978.

Thomson, L. C., & Wright, W. D. The convergence of
the tritanopic confusion loci and the derivation of the
fundamental response curves. Journal of the Optical
Society of America, 1953, 43, 890-894,

BRIAN A. WANDELL

Trabka, E. A. On Stiles’ line element in brightness-color
space and the color power of the blue. Vision Re-
search, 1968, 8, 113-133.

Trezona, P. W. Additivity of colour equations. Pro-
ceedings of the Physical Society, London, 1953, 66 B,
548-556.

Trezona, P. W. Additivity of colour equations. Pro-
ceedings of the Physical Society, London, 1954, 67B,
513-522.°

Tversky, A. Choice by elimination. Journal of Math-
ematical Psychology, 1972, 9, 341-367. (a)

Tversky, A. Elimination by aspects: A theory of choice.
Psychological Review, 1972, 79, 281-299. (b)

Vos, J. J. Friele, L. F. C., & Walraven, P. L. Color
metrics (Proceedings of the Helmholtz Memorial
Symposium on Color Metrics Dribergen, the Neth-
erlands, 1971). Soesterberg, The Netherlands: AIC
Holland c/o Institute for Perception TNO, 1972.

Vos, J. J., & Walraven, P, L. An analytical description
of the line element in the zone-fluctuation model of
colour vision: I. Basic concepts. Vision Research,
1972, 12, 1327-1344. (a)

Vos, 1. J.,, & Walraven, P, L. An analytical description
of the line element in the zone-fluctuation model of
colour vision: II. The derivation of the line element.
Vision Research, 1972, 12, 1345-1365. (b)

Wandell, B. A. Speed-accuracy tradeoff in visual de-
tection: Applications of neural counting and timing,
Vision Research, 1977, 17, 217-225.

Whittle, P., & Swanston, M. T. Luminance aiscrimi-
nation of separated flashes: The effect of background
luminance and the shapes of T.V.L. curves. Vision
Research, 1974, 14, 713.

Wyszecki, G., & Stiles, W. S. Color science. New York:
Wiley, 1967.

Received July 27, 1981
Revision received December 14, 1981 m



