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Abstract 
We describe a suite of software tools for image system 
simulation. The tools model the three-dimensional scene 
radiance, image formation by the optics, sensor transduction, 
image processing and display rendering.    
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1. Introduction  
Imaging systems are designed to both capture and display 
information. Such systems comprise multiple components that 
impact performance and quality. Engineers typically evaluate 
individual system components, but customers judge 
performance by viewing the final output that depends on how 
the components work together. Consequently, understanding 
components in isolation, without accounting for the coordination 
of the system components, provides a limited assessment. A 
simulation environment can provide the engineer with useful 
tools that clarify how the system components work together to 
produce the final output. 
 
Image systems simulation software should help the engineer 
improve the critical system components and provide 
opportunities to experiment with new designs and components. 
With these goals in mind, we developed the Image Systems 
Engineering Toolbox (ISET), an integrated suite of Matlab data 
structures and functions that can be used to characterize the 
variety of imaging components and simulate how they transform 
data along the imaging pipeline [1, 2].  
 
ISET organizes the data structures into software objects 
corresponding to the scene, optics, sensor, processor, and 
display (Figure 1). The scene object is a radiometric description 
of the input data. The optics object defines the lens properties 
that convert the scene into an irradiance image at the sensor 
surface. The sensor object defines the properties of the pixels 
and sensor array that govern how the irradiance image is 
converted into electrons. The image processor (IP) object is a 
collection of algorithms that define how sensor data are 
transformed into display values. The display object is a 
radiometric description of the final image for any calibrated 
display.  
 
The ISET functions act on these objects and their associated 
data. For example, there are functions that combine the scene 
and optics objects to calculate the sensor irradiance. Other 
functions combine the irradiance with the sensor object to 
calculate the sensor voltages. Additional functions implement 
image-processing algorithms, model display rendering and 
calculate the spectral and spatial properties of the displayed 
image.  

 

2. Imaging Systems 
The simulation software aims to follow two key principles: 
1. Model the complete image processing pipeline 
2. Use meaningful physical units 

 

 
Figure 1. An image systems simulation environment. The 
software is organized around objects and associated data 
representing the scene, optics, sensor, processor and display.  
 
The two principles are suggested in the flow chart in Figure 1.  
This chart shows key objects and the general units associated 
with important data attached to these objects. The need for a 
physically meaningful representation differs from the 
requirement in many computational photography and image 
coding applications, where knowledge of the digital image 
values is often sufficient. Image systems simulations must 
predict the effects of a lens, the responses in a sensor, or the 
image quality of a display.  To do this, one must know the 
spectral radiance and irradiance and in some instances the 
spectral light field [3-5].  

 

Scene representation  

A complete scene radiometric description, L, describes the rate 
of photons in every scene position (x, y, z), direction (ߠ, ߶), 
wavelength (ߣ), polarization, and moment in time [3-5]. 
Ignoring polarization, the units of radiance are normalized per 
time interval (s), solid angle (sr), and area of the point source 
(photons/s/nm/sr/m2).  

But not every simulation requires the full scene description, and 
the complexity of the scene representation should match the 
simulation goals. A simple representation of scene radiance, L(x, 
y, ߣ), is sufficient to predict the visibility of blur, noise, or color 
differences. A more complex representation, L(x, y, z, ߣ ,߶ ,ߠ), 
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is necessary to analyze transparency, depth of field, and 
synthetic apertures. 
 
It is possible, though challenging, to measure natural scene 
radiances using hyperspectral and multispectral imaging 
methods, and several datasets can be downloaded from the web 
[6-9]. These data can provide insights about the typical dynamic 
range and spectral characteristics of likely scenes. The data size 
of the spectral representations can be substantial, particularly 
when both the surface and illuminant vary across the scene.  The 
size of the spectral data can be reduced, without much loss in 
precision, by using linear models with a modest (6-8) number of 
basis functions [10]. 
 
Image formation  
In typical applications, the imaging optics converts scene 
radiance into an irradiance image at the sensor surface. The 
irradiance represents the sum of rays across all angles 
(photons/sec/nm/m2). But for modeling light field cameras it is 
necessary to represent the intensity of rays at multiple angles.  
 
Just as there are useful simplifications of the scene radiance, 
optics simulation can be carried out with varying degrees of 
complexity. To compute the optical irradiance we account for a 
number of factors. The minimum requirement is to account for 
the lens aperture, focal length, magnification, and lens shading 
(the fall-off in intensity with lens field height). More complex 
models specify geometric distortions and a wavelength-
dependent but shift-invariant point spread function.  The most 
complex models also incorporate the wavelength- and 3D space-
varying point spread function.  
 

Sensor transduction 
ISET uses the concept of a generalized sensor, a software object 
that includes descriptions of several system components that are 
integrated with the sensor chip. The essence of the generalized 
sensor is a phenomenological model of how irradiance is 
converted to sensor outputs (voltage). A phenomenological 
model is a set of mathematical formula that predicts properties, 
such as light sensitivity, spatial and temporal integration, fixed 
and temporal noise, and circuit properties (e.g., quantization). 
The parameters of the model depend on system components that 
are coupled closely coupled to the sensor - the color filter array, 
anti-aliasing filter, and microlens array - although these 
components are not part of the chip itself. The generalized 
sensor object includes the image system components whose 
properties are essential for an accurate prediction of the sensor 
response to any irradiance image.  
In most digital image sensors, the transduction of photons to 
electrons is approximately linear: specifically, the photodetector 
response (either CCD or CMOS) increases linearly with the 
number incident photons up to saturation. Depending on the 
material properties of the silicon substrate, such as its thickness, 
the photodetector wavelength sensitivity will vary.  But even so, 
the response is linear in that the detector sums the responses 
across wavelengths.  Hence, ignoring device imperfections and 
noise, the mean response of the photodetector to an irradiance 
image ( I (, x) , photons/sec/nm/m2) is determined by the sensor 

spectral quantum efficiency ( S() , e-/photon), aperture function 

across space Ai (x) , and exposure time (T, sec).  For the ith 

photodetector, the number of electrons will be summed across 
the aperture and wavelength range  

,

( ) ( ) ( , )i i i
x

e T S A x I x d dx


      (1) 

A complete sensor simulation must account for the device 
imperfections and noise sources.  Hence, the full simulation is 
more complex than the linear expression in Equation 1. For a 
more complete description see Ref. [5].  
 

Image processing  
The processor module converts the sensor voltages in the two-
dimensional sensor array into an RGB image that can be 
rendered on a specified display.  The image systems pipeline 
includes algorithms to control exposure duration, interpolate 
missing RGB sensor values (demosaicking) and transform 
sensor RGB values into an internal color space for encoding and 
display (color-balancing and display rendering).  There are 
many different approaches to auto-exposure, demosaicking and 
color balancing, and these are often proprietary. ISET includes 
basic algorithms that are in the public domain. 
 
Display rendering  
ISET uses three functions to predict the spatial-spectral radiance 
emitted by a display.  First, a look-up table that summarizes the 
display transduction (gamma function) converts digital values 
into a measure of the linear intensity.  Second, pixel point spread 
functions for each color component (sub-pixel point spread 
function) are used to generate a spatial map of linear intensity 
for each of the display primaries. By modifying the point spread 
functions it is possible to model displays with unusual pixel 
layouts, such as RGBW, RGBG and PenTile patterns [11]. 
Third, the spectral power distributions of the primaries are used 
to calculate the spectral composition of the displayed image. 
These three functions – the display gamma, the sub-pixel point 
spread functions (psf) and the spectral power distributions (spd) 
of the primaries – are sufficient to characterize the performance 
of displays with independent pixels [12].  

Accounting for these three properties of the display provides a 
practical starting point for many display simulations [12-13], 
although they may not be sufficient for some displays [14]. One 
of the values of the display simulation is to help engineers 
design and evaluate sub-pixel rendering algorithms for novel 
color displays without requiring a physical display prototype.   

3. Summary 
There are several ways in which simulation software can guide 
the design of imaging systems and lead to innovative solutions.  
First, simulation software can enhance communication and 
collaboration between people with different expertise and at 
different locations. As an example, consider an engineer who is 
inventing new image processing algorithms.  Software 
simulation enables the person to generate inputs whose 
properties accurately reflect the expected inputs in a wide range 
of circumstances.  These simulations provide meaningful data 
even though the imaging hardware is incomplete or unavailable 
because it is being developed at other locations and companies.  
 
Second, simulation software can be used to create calibrated test 
images that are valuable for evaluating performance.  The 
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engineer can simulate sensor data over a wide range of 
conditions that are difficult to create in the laboratory (high 
dynamic range, low light levels, and so forth).  For example, to 
characterize the tradeoff between spatial resolution and light 
sensitivity, we used the ISET simulator to parametrically vary 
scene light levels and sensor pixel size [15]. To characterize the 
effects of camera motion on spatial resolution, we varied scene 
intensity, pixel size, exposure duration, and camera motion [16]. 
It would have been very difficult, or even impossible, to 
systematically vary and measure all of these parameters.   
 
Third, simulation software can model the integration of imaging 
components that are difficult or even impossible to manufacture 
with current technologies. For example, ISET has been used to 
design pixels with integrated color filters based on nano-
patterned metal layers [16-17], transverse field detectors with 
pixels electrically tunable spectral sensitivities [18-19], and 
imaging sensors with novel color pixel arrays [20-22].  These 
simulations led to inventions that are now being developed in 
academic and industry laboratories.  
 
There is a great deal of room for development of image systems 
simulation software.  There are opportunities to expand 
simulations to include systems that use multiple sensors, and 
even sensors of different types, such as specialized components 
that measure depth, motion, and location.  As imaging systems 
become more complex and more deeply integrated with other 
technologies, such as automobiles, the need for simulations will 
continue to grow. 
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