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We present a density functional theory-based method for calculating thermionic emission currents
from a cathode into vacuum using a non-equilibrium Green’s function approach. It does not require
semi-classical approximations or crude simplifications of the electronic structure used in previous
methods and thus provides quantitative predictions of thermionic emission for adsorbate-coated sur-
faces. The obtained results match well with experimental measurements of temperature-dependent
current densities. Our approach can thus enable computational design of composite electrode mate-
rials. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4805002]

I. INTRODUCTION

The efficiency of hot cathodes can be increased by de-
veloping new materials with sufficient thermionic emission
of electrons operating at lower temperatures. These cath-
odes are important for a growing range of applications, in-
cluding electron guns (used, e.g., in electron microscopes),
thermionic energy converters and the recently demonstrated
photon-enhanced thermionic energy converters.1 Computa-
tional prediction of thermionic current densities will greatly
aid the design of new electrodes. However, first-principles
modeling of tunneling amplitudes governing thermionic emis-
sion has proven elusive. This article presents a method for
calculating these tunneling rates from first principles, which
is able to treat structurally complex surfaces. Hence we can
predict thermionic emission from composite or multi-layer
electrodes, which can often yield higher current densities than
relatively simple elemental surfaces.

The work function of a metal surface, i.e., the energy
required to remove an electron at the Fermi level from
the metal, can easily be extracted from potential energies
obtained within density functional theory (DFT). The predic-
tion of electronic emission currents, however, also requires
knowledge about the scattering properties of the surface. Ex-
isting approaches to calculating thermionic or field emission
are based on crude approximations in terms of semi-classical
statistics and averaging the surface electronic structure to
one dimension, which restricts the applicability to simple
surfaces.2–5 In the case of field emission, previous first-
principles calculations have considered a jellium model to
describe the reservoir of electrons and have also used an aver-
age 1D potential.6 Huang et al.7 employed matching of wave
functions in 3D to calculate field emission, but the analytical
approximation of the wave functions decaying into vacuum
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yields non-zero currents only for finite fields and thermionic
currents cannot be calculated. Musho et al.8 accounted for
quantum statistics in thermionic emission via Green’s func-
tions, but relied on simple wave functions with an effective
electron mass and the work function as free parameters.

The method presented here does not involve semi-
classical approximations nor simplification of the electronic
structure, and is thus able to predict thermionic current den-
sities purely from first principles even for complex sur-
face structures with adsorbates. The method uses a non-
equilibrium Green’s function (NEGF) approach based on
DFT calculations,9, 10 where both the semi-infinite systems
of the metallic lead and vacuum are accounted for via self-
energies, thus overcoming the limitations of existing ap-
proaches outlined above.

II. THEORY

The NEGF approach (see Refs. 9 and 10 for an introduc-
tion) allows for a description of systems that are not in ther-
modynamic equilibrium, e.g., due to the presence of reser-
voirs held at different chemical potentials or temperatures,
which we use here to model steady currents due to tem-
perature differences. We consider the non-interacting Kohn-
Sham states11 obtained from DFT calculations as eigenstates
of the separate subsystems (reservoirs and scattering region)
in equilibrium. We also neglect other interactions such as
electron-phonon scattering, only considering coherent trans-
port. Of central importance is the retarded single-particle
Green’s function of the system

GR(E) = (E + iη − H )−1, (1)

where the infinitesimally small parameter η = 0+ assures that
GR describes the response to perturbations in the past, and
H is the Hamiltonian of the system. In the following we will
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FIG. 1. Scheme of supercells employed in the DFT calculations using the ex-
ample of W(110): bulk lead (a) and surface slab (b). W atoms are depicted by
blue spheres. The purple (dark) volume corresponds to the metallic lead, the
green (light) volume to the scattering region. The atoms in the unshaded part
of the slab supercell serve as a decoupling region from the adjacent vacuum
layer.

drop the superscript R from all Green’s functions and self-
energies, and we will also omit the term iη.

In NEGF transport calculations, the leads are typically
modeled as semi-infinite systems,9, 10 serving as reservoirs for
electrons and holes which are in thermodynamic equilibrium.
To describe electronic emission through a surface into vac-
uum, we consider a semi-infinite metallic lead as a source and
a semi-infinite vacuum region as a drain for electrons. The
supercells employed to calculate the DFT bandstructures en-
tering the Green’s function calculations are depicted in Fig. 1
for bulk lead (a) and surface slab (b).

Approaches to treating the coupling of the scattering
region to the semi-infinite reservoirs include matching of
Kohn-Sham potentials with open boundary conditions on the
scattering region12 or extracting the coupling matrix elements
by expansion of a DFT super cell Hamiltonian in a localized
basis set.13 We follow the latter approach, performing sep-
arate calculations for the scattering region (a surface slab)
and for the periodically continued left- and right-hand sides
of the system. The periodically continued systems are sub-
divided into principal layers along the transport direction.14

These layers are chosen to be thick enough such that inter-
actions beyond neighboring layers are negligible. Green’s
functions for principal layers of the isolated, semi-infinite
systems are then calculated iteratively using a highly con-
vergent scheme,15 which relates the Green’s function of a
principal layer gn (n = 0 is the surface layer) to that of the
following principal layer gn+1 and vice versa via transfer ma-
trices T and T̄ , respectively: gn+1 = Tgn and gn = T̄ gn+1 for
n → ∞.

The interaction between the scattering region with
both the lead and the vacuum is assumed to vanish beyond
the adjacent principal layers, leading to a block-diagonal

Hamiltonian,

H =

⎛
⎜⎝

HL τLS 0

τ
†
LS HS τ

†
SV

0 τSV HV

⎞
⎟⎠, (2)

where the matrix blocks HL, HS, and HV are the Hamiltoni-
ans of the bulk lead, scattering region, and vacuum region,
respectively. τLS and τ SV describe the interaction of the scat-
tering region with the lead and with the vacuum, respectively.
The Green’s function of the scattering region GS is then
expressed using the Hamiltonian HS and the self-energies �L

and �V of the lead and the vacuum regions, respectively,14

GS(E) = [E − HS − �L(E) − �V(E)]−1 . (3)

The self-energies are calculated from the lead and the
vacuum surface principal layer Green’s functions gL and gV,
respectively,

�L(E) = τ
†
LS gL(E) τLS,

(4)
�V(E) = (τSV − E SV)† gV(E) (τSV − E SV),

where SV accounts for the overlap of the basis functions used
for the slab and the vacuum region. This will be explained in
detail below.

For the metallic lead, the calculation of the surface prin-
cipal layer Green’s function15

gL(E) = [
E − h00

L − (
h01

L

)†
T̄L(E)

]−1
(5)

is based on the on-layer and layer-to-layer hopping ma-
trices h00

L = HL and h01
L , respectively, represented here in

a maximally-localized Wannier function (MLWF) basis16, 17

obtained from DFT calculations. T̄L is the lead transfer ma-
trix. For all calculations presented here, we have chosen a
principal layer thickness of four atomic layers for the metallic
leads.

Since the momenta qx, qy perpendicular to the transport
direction z are conserved, we only perform a Wannier trans-
formation of the Bloch states |εq〉 in the z-direction:

|wqx,qy ,Rz〉 = c

2π

∫
dqz

∑
εq

U q
wεe−iqzRz |εq〉. (6)

w enumerates the Wannier functions, U is a unitary matrix, c
is the supercell lattice constant in the transport direction, and
Rz is a lattice vector component. For the periodically contin-
ued vacuum system, the eigenstates are plane waves. We ex-
press the conserved in-plane components of the kinetic energy
operator in momentum space, whereas the normal direction is
described as a finite difference in real space (we use atomic
units unless otherwise noted),

HV = 1

2

(
q2

x + q2
y

)

+ 1

2h2
(2δz,z′ − δz,z′+1 − δz,z′−1)|z〉〈z′| + �, (7)

where z, z′ denote vacuum sublayers along the transport di-
rection. The addition of the work function � obtained from
the surface slab calculation is required to align the subsystem
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Hamiltonians in (2). For numerical convenience when evalu-
ating τ SV and SV, the grid spacing h is chosen to match that
of the Fourier grid used in the plane wave DFT calculation of
the surface slab, i.e., the vacuum sublayer thickness h is of the
order of 0.1 Å. The vacuum region in the slab, i.e. the princi-
pal vacuum surface layer, is thus spanned by the order of 100
sublayers. This is a good approximation, since states with en-
ergies too high to be sufficiently well represented in the basis
determined by the chosen plane wave cut-off have a vanishing
contribution to thermionic emission for the temperatures con-
sidered here. Considering the off-diagonal elements with z �=
z′ of (7) as coupling between neighboring principal vacuum
layers through their outermost sublayers, the vacuum surface
layer Green’s function is calculated analogously to the above
case of the metallic lead as

gV(E) = [
E − h00

V − h01
V TV(E)

]−1
. (8)

h00
V , h01

V , and TV are the on-layer, layer-to-layer hopping, and
transfer matrices for the vacuum principal layers, respectively.

The interaction τ SV between the scattering region and
vacuum is calculated by projection of the scattering region
Hamiltonian in its Wannier function representation onto the
vacuum principal layer basis functions |qx, qy, z〉:

〈qx, qy, z|τSV|wqx,qy ,Rz=0〉 = 〈qx, qy, z| c

2π

∑
εq

εqU q
wε|εq〉.

(9)
Since the surface slab is aperiodic along z, there are no q-point
sampling sub-divisions along z: q = (qx, qy, 0) and thus also
Rz = 0. The Wannier functions extend into vacuum, and there
is overlap with the vacuum basis functions |qx, qy, z〉:

〈qx, qy, z|SV|wqx,qy ,Rz=0〉 = 〈qx, qy, z|wqx,qy ,Rz=0〉 �= 0.

(10)

The range of z considered in Eqs. (9) and (10) is restricted
to be greater than some constant z0, typically at a few Å above
the surface. Note that the overlap matrix SV partially compen-
sates the effect of including small values of z into the calcula-
tion of τ SV, such that the results for (3) are relatively insensi-
tive to the exact choice of z0.

Since z0 lies relatively deep in the vacuum layer of the
slab system, no ionic pseudo core spheres are included in the
integration intervals. Therefore, all-electron and pseudo va-
lence Bloch states coincide in the regions considered for inte-
gration, and no corrections due to ultrasoft pseudopotential or
projector-augmented wave implementations in the DFT code
appear.

We now consider the Landauer-Büttiker formalism,18, 19

in which the thermionic current density is given as

J (T ) = 1

πA

∫
dE f [E − μ(T ), T ] T (E), (11)

where A is the surface area of the considered supercell geom-
etry, f [E − μ(T), T] is the Fermi-Dirac distribution, and

T (E) = Tr[	L(E) G
†
S(E) 	V(E) GS(E)] (12)

is the transmission function.9, 10 	L/V(E) = i [�L/V(E)
− �

†
L/V(E)] are broadening functions. Since qx and qy are

good quantum numbers, T (E) can be calculated for fixed val-
ues of the in-plane momenta, where the total transmission is
then given as a two-dimensional Brillouin zone integral.

We will compare first principles results obtained from
(11) to experimental results, often available as fits against the
Richardson-Dushman equation

J (T ) = AT 2 exp

(
− �

kBT

)
. (13)

This equation is based on a semi-classical treatment of an
electron gas at a potential step.3 A is the Richardson-Dushman
constant, � is the work function, and kB is Boltzmann’s con-
stant. Fitted constants of A and � effectively include first-
order temperature dependencies of the work function and
are, therefore, also referred to as the apparent Richardson-
Dushman constant and work function, respectively.3

III. DETAILS OF CALCULATION

DFT calculations were performed with the DACAPO20 ul-
trasoft pseudopotential21 code. Kohn-Sham states were ex-
panded in plane wave basis sets with a cutoff of 350 eV.
Brillouin zones were sampled with k-point spacings of at
most ∼0.1 Å−1. Fermi surface smearing was performed using
Fermi-Dirac statistics with temperatures kBT ≥ 0.1 eV (kBT
= 0.1 eV was used for all structural relaxations, while higher
temperatures were used to self-consistently calculate the tem-
perature dependence of the work function; this temperature
dependence can be more efficiently approximated by recalcu-
lating the Fermi level at different temperatures for fixed elec-
tronic energy levels). Transformation of Bloch states to Wan-
nier functions was performed using the ASE software suite.22

IV. RESULTS

To compare results obtained using the presented first
principles method to experimental findings, we consider the
(100) and (110) surfaces of LaB6 and W, respectively, as
benchmark systems, since these surfaces are relatively stable
and well-characterized at elevated temperatures.23, 24 We also
consider W(110) surfaces with Cs adsorbates. Cs is known to
lower the work function due to induced surface dipoles.25 The
influence of the adsorbates on electronic tunneling probabil-
ities is an important physical effect which can be predicted
with the presented method.

Both LaB6 and tungsten exhibit very low thermal expan-
sion coefficients of the order of a few 10−6 K−1.26, 27 As-
suming about 1% lattice constant expansion at high temper-
atures, the lattice expansion-induced work function changes
are smaller than 0.05 eV, which we neglect here.

A. LaB6(100)

Due to its thermal stability and low work function (2.3 eV
for the most stable (100) surface), LaB6 is commonly used
as the cathode material for electron microscopes.29 LaB6

cleaves cleanly at (100) planes, leaving the surface terminated
by La atoms.23 DFT calculations using the Perdew-Burke-
Ernzerhof30 (PBE) exchange-correlation functional also yield
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FIG. 2. Richardson-Dushman plot of thermionic emission from LaB6(100).
Experimental data from Ref. 28 (�) and Ref. 23 (�). The solid lines show
fits of DFT results to Eq. (13) based on the PBE (
), RPBE (�), and LDA (•)
exchange-correlation functionals, respectively.

2.3 eV for the work function of the (100) surface,31 while for
the revised PBE20 (RPBE) functional it is underestimated by
0.1 eV and for the local density approximation11 (LDA) it is
overestimated by 0.3 eV. Relaxing the surface structure ac-
cording to the LDA functional increases the work function
further by only 0.05 eV. We neglect the effect of different re-
laxed surface structures due to different functionals and fo-
cus on the dominant differences in the electronic structure
only; all transport properties have been calculated for sur-
faces relaxed according to the PBE functional. Despite the
fact that the LaB6 work function is described best by the PBE
functional, we also performed transport calculations using
the LDA and RPBE functionals to benchmark the sensitivity
of the emission current densities to the exchange-correlation
functional employed.

Using the PBE approximation for the exchange and cor-
relation functional also yields very good agreement with
experiments23, 28 for thermionic current densities (Fig. 2), in
particular for the current density reported in Ref. 23, where
perfect stoichiometry and absence of reconstruction of the
LaB6(100) surface was confirmed by Auger electron spec-
troscopy and low energy electron diffraction, respectively.
In agreement with the trends in work functions described
above, RPBE and LDA calculations over- and underesti-
mate thermionic current densities of LaB6(100), respectively.
Note that the apparent work functions obtained from fitting
the DFT current density data to Eq. (13) differ less than the
work functions listed above, which were obtained from the
electrostatic potential for a fixed temperature (kBT = 0.1 eV
≈1160 K · kB). The apparent work functions for both PBE and
LDA are about 2.3 eV, with 2.2 eV for RPBE.

B. W(110) and Cs/W(110)

For the tungsten surfaces, we employ the RPBE func-
tional since it performs well for the description of covalent
bonds to transition metal surfaces.20 The bulk lattice constants
of tungsten relaxed according to the PBE and RPBE func-
tionals are very similar with values of 3.18 Å and 3.20 Å, re-
spectively, in good agreement with the experimental result of
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FIG. 3. Richardson-Dushman plot of thermionic emission from a close-
packed tungsten surface with experimental data (•) from Ref. 24 and DFT
results (�) based on the RPBE functional.

3.16 Å.32 The fixed-temperature work function predicted us-
ing the RPBE functional is 4.61 eV for the W(110) surface
(close to the experimental value of 4.65 eV),24 while the PBE
prediction is 0.14 eV higher. For an optimal description of the
work function, we have chosen the RPBE functional also for
the clean tungsten surface.

Current densities predicted from the presented method
compare very well to experimental data24 for the most stable
W(110) surface (Fig. 3). The RPBE calculations yield a value
of 4.62 eV and 4.61 eV for the apparent and fixed-temperature
work functions at kBT = 0.1 eV, respectively, comparing well
to the experimental result for the apparent work function of
4.65 eV.24

Adsorbate-induced surface dipoles lower the work func-
tions of the bare substrates. Here, we study cesiated tungsten
as an example. We consider two coverage ratios of cesium
atoms: one monolayer (ML), corresponding to about one Cs
per 2×2 W(110) supercell, where the surface area per Cs is
about the same as in Cs(110), and ∼0.69 ML (one Cs per
3×2 W(110) supercell), where the adsorbate-induced work
function reduction is the largest.33
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FIG. 4. Calculated thermionic current densities for cesiated W(110) based
on the RPBE functional. The red (solid) line shows a fit of the DFT data
to the Richardson-Dushman equation for monolayer Cs-coverage, the blue
(dashed) line for (near optimal) 0.69 monolayer coverage.
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FIG. 5. Brillouin zone-resolved thermionic emission from clean (a) and ce-
siated (0.69 ML) W(110) (b) at kBT = 0.17 eV obtained from RPBE cal-
culations. The Brillouin zone of the cesiated system is smaller due to the
3×2 W(110) surface area.

Overall, the calculated thermionic current density at
0.69 ML coverage is higher than for 1 ML (Fig. 4), which
is due to a lower work function of ∼1.4 eV for 0.69 ML
compared to ∼1.6 eV at monolayer coverage. Experimental
results yield � ≈ 1.5 eV and a Richardson-Dushman constant
of A ≈ 3 A/cm2/K2 for polycrystalline samples.34 The DFT
estimate for A is ∼0.5 A/cm2/K2. As the DFT results only
represent the most stable tungsten surface, while the experi-
mental results correspond to an average over orientations, the
results cannot be compared quantitatively. However, a lower
DFT estimate of A is plausible, considering that the DFT esti-
mate of the work function at optimal coverage is 0.1 eV lower
than the experimental one. This indicates that the DFT esti-
mate of the adsorbate-induced surface dipole will be larger
by a similar magnitude. Due to the opposite trends in current
density with increasing magnitudes of � and A, the current
densities estimated, e.g., at 1000 K from the experimental pa-
rameters and calculated within DFT only differ by a factor of
about two.

The contribution of electrons with non-zero transverse
momenta, q, to the thermionic current densities for clean and
cesiated W(110) (Fig. 5) shows that considering only the
q = 0 component of the current density is insufficient to de-
scribe thermionic emission from low-work function surfaces
with adsorbates. For bare tungsten, an integral over the cur-
rent density contributions at kBT = 0.17 eV over ∼1% of
the Brillouin zone around 	 accounts for ∼80% of the to-
tal current density. On the other hand, an integral over an
equivalent area of the Brillouin zone of the cesiated system
only yields ∼30% of the total current density. This shows that
the description of thermionic emission of composite electrode
surfaces with low work functions involving, e.g., adsorbates
requires a three-dimensional description of the scattering
problem.

V. CONCLUSION

We have developed a first-principles technique for cal-
culating thermionic current densities which yields very good
agreement with experiments. The method is based on non-
equilibrium Green’s functions. Unlike previous approaches,
which involved semi-classical approximations or crude sim-
plifications of the electronic structure, there are no limita-
tions with respect to the complexity of materials for which
current densities can be predicted with our method. This is
particularly crucial for predicting the emission from compli-
cated composite electrode materials including the important

low-work function surfaces covered with alkali or alkali-earth
adsorbates.

The predictive power of the method, which we have
benchmarked against well-studied experimental systems,
shows that this will be a very useful tool in the search for
new cathode materials for future thermionic devices.
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