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1 Wisdom from Richard Sutton

To begin our journey into the realm of reinforcement learning, we preface our manuscript
with some necessary thoughts from Rich Sutton, one of the fathers of the field. Here is his
Bitter Lesson March 13, 2019:

The biggest lesson that can be read from 70 years of AI research is that

general methods that leverage computation are ultimately the most effective,

and by a large margin. The ultimate reason for this is Moore’s law, or rather

its generalization of continued exponentially falling cost per unit of computation.

Most AI research has been conducted as if the computation available to the agent

were constant (in which case leveraging human knowledge would be one of the

only ways to improve performance) but, over a slightly longer time than a typical

research project, massively more computation inevitably becomes available. Seeking

an improvement that makes a difference in the shorter term, researchers seek

to leverage their human knowledge of the domain, but the only thing that matters

in the long run is the leveraging of computation. These two need not run counter

to each other, but in practice they tend to. Time spent on one is time not

spent on the other. There are psychological commitments to investment in one

approach or the other. And the human-knowledge approach tends to complicate

methods in ways that make them less suited to taking advantage of general methods

leveraging computation. There were many examples of AI researchers’ belated

learning of this bitter lesson, and it is instructive to review some of the

most prominent.

In computer chess, the methods that defeated the world champion, Kasparov,

in 1997, were based on massive, deep search. At the time, this was looked upon

with dismay by the majority of computer-chess researchers who had pursued methods

that leveraged human understanding of the special structure of chess. When

a simpler, search-based approach with special hardware and software proved vastly

more effective, these human-knowledge-based chess researchers were not good

losers. They said that ‘‘brute force" search may have won this time, but it

was not a general strategy, and anyway it was not how people played chess. These

researchers wanted methods based on human input to win and were disappointed

when they did not.

A similar pattern of research progress was seen in computer Go, only delayed

by a further 20 years. Enormous initial efforts went into avoiding search by

taking advantage of human knowledge, or of the special features of the game,

but all those efforts proved irrelevant, or worse, once search was applied effectively

at scale. Also important was the use of learning by self play to learn a value

function (as it was in many other games and even in chess, although learning

did not play a big role in the 1997 program that first beat a world champion).

Learning by self play, and learning in general, is like search in that it enables

massive computation to be brought to bear. Search and learning are the two

most important classes of techniques for utilizing massive amounts of computation

in AI research. In computer Go, as in computer chess, researchers’ initial

effort was directed towards utilizing human understanding (so that less search

was needed) and only much later was much greater success had by embracing search

and learning.

In speech recognition, there was an early competition, sponsored by DARPA,

in the 1970s. Entrants included a host of special methods that took advantage

of human knowledge---knowledge of words, of phonemes, of the human vocal tract,

etc. On the other side were newer methods that were more statistical in nature

and did much more computation, based on hidden Markov models (HMMs). Again,

the statistical methods won out over the human-knowledge-based methods. This
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led to a major change in all of natural language processing, gradually over

decades, where statistics and computation came to dominate the field. The recent

rise of deep learning in speech recognition is the most recent step in this

consistent direction. Deep learning methods rely even less on human knowledge,

and use even more computation, together with learning on huge training sets,

to produce dramatically better speech recognition systems. As in the games,

researchers always tried to make systems that worked the way the researchers

thought their own minds worked---they tried to put that knowledge in their systems---but

it proved ultimately counterproductive, and a colossal waste of researcher’s

time, when, through Moore’s law, massive computation became available and a

means was found to put it to good use.

In computer vision, there has been a similar pattern. Early methods conceived

of vision as searching for edges, or generalized cylinders, or in terms of SIFT

features. But today all this is discarded. Modern deep-learning neural networks

use only the notions of convolution and certain kinds of invariances, and perform

much better.

This is a big lesson. As a field, we still have not thoroughly learned it,

as we are continuing to make the same kind of mistakes. To see this, and to

effectively resist it, we have to understand the appeal of these mistakes. We

have to learn the bitter lesson that building in how we think we think does

not work in the long run. The bitter lesson is based on the historical observations

that 1) AI researchers have often tried to build knowledge into their agents,

2) this always helps in the short term, and is personally satisfying to the

researcher, but 3) in the long run it plateaus and even inhibits further progress,

and 4) breakthrough progress eventually arrives by an opposing approach based

on scaling computation by search and learning. The eventual success is tinged

with bitterness, and often incompletely digested, because it is success over

a favored, human-centric approach.

One thing that should be learned from the bitter lesson is the great power

of general purpose methods, of methods that continue to scale with increased

computation even as the available computation becomes very great. The two methods

that seem to scale arbitrarily in this way are search and learning.

The second general point to be learned from the bitter lesson is that the

actual contents of minds are tremendously, irredeemably complex; we should stop

trying to find simple ways to think about the contents of minds, such as simple

ways to think about space, objects, multiple agents, or symmetries. All these

are part of the arbitrary, intrinsically-complex, outside world. They are not

what should be built in, as their complexity is endless; instead we should build

in only the meta-methods that can find and capture this arbitrary complexity.

Essential to these methods is that they can find good approximations, but the

search for them should be by our methods, not by us. We want AI agents that

can discover like we can, not which contain what we have discovered. Building

in our discoveries only makes it harder to see how the discovering process can

be done.

2 Introduction to Reinforcement Learning

What is the goal or motivation of reinforcement learning?

Reinforcement learning is a subset of machine learning. The goal of machine learning
is to teach computers how to make decisions from data. This motivation stems from years
of humans trying to automate everything.
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2.1 Alan Turing

Fundamental to the study of all of machine learning is Alan Turing. Alan Turing was one
of the founding fathers of computer science and artificial intelligence. In his seminal pa-
per ”Computing Machinery and Intelligence,” he proposed a theory on how machines learn.

In order to develop an intelligence machine you are faced with two paths. First, you can
hard code all of the experiences of an adult human into a computer program. This way a
computer will be able to think just like an adult would. However, this is extremely difficult
to do. Hardcoding every fact about your life from the day you were born to reading this
paper is no easy task.

The superior approach that Turing proposed is teaching the computer how to think.
It’s a lot easier to start with a child’s brain (as there is very little hard coding to do) and
teach it the way of thinking so that it thinks for itself.

This is the reinforcement learning approach.

2.2 Reinforcement Learning

Reinforcement learning specifically is the study of how agents (ML algorithms) can learn
from trial and error. It’s a formalization of the idea of punishing or rewarding a program
in order to make it perform the task you desire.

For a model to learn, we must take into account two properties. First, we must take
into account the agent, which is the model itself. Secondly, we must take into account the
environment. The environment is what the model interacts with. In the real world, the
environment we interact with is Earth and everything around us.

This type of learning is different from other types because it is active. You are engaged
and participating in the learning process. The more you interact with the environment the
more you will learn about the environment. Moreover, the actions are often sequential -
future interactions depend on earlier ones. Think of a video game, your future actions will
depend on the actions you take right now.

A big reason why reinforcement learning (RL) models are extremely successful is be-
cause they are goal-oriented. In contrast to deep learning, RL models are instructed to
be versatile to be applied to various tasks. Furthermore, with reinforcement learning, you
don’t need examples of the optimal behavior. The agent learns the task from the ground up.

There are two big reasons to approach problems from a reinforcement learning perspec-
tive. First, you can find solutions to problems without explicitly programming behavior.
The second and rather subtle idea is you can adapt to different environments. You can
learn to anticipate/work around unseen circumstances.

This study of reinforcement learning requires us to think about time, long-term conse-
quences of actions, actively gathering experience, predicting the future, and dealing with
uncertainty.

2.3 Interaction Loop

Before the interaction loop, let’s start with some definitions.

Agent - The entity that learns and makes decisions in the RL framework. The primary
goal of the agent is to learn a policy (strategy) that maximizes the sum of all the rewards
over time.
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Environment - The external system in which the agent interacts. It provides feedback
to the agent in the form of rewards or penalties based on the actions that the agent takes.

Reward - The numerical value that the agent received from the environment after tak-
ing a specific action. This is the feedback that the agent gets when interacting with the
environment. It indicates to the agent how good or bad their action was.

Policy - The strategy that an agent uses to determine which actions to take in an en-
vironment. It maps states to actions in a way that maximizes reward through ongoing
learning and adaptation.

State - The current situation or configuration of the environment that the agent is in-
teracting with. It captures all the relevant information needed for the agent to determine
the best action to take next.

[Image of the agent environment interaction loop]

The interaction loop is an iterative process in which an agent learns and refines its
policy. The goal of the interaction loop is to optimize the sum of all the rewards through
repeated actions.

2.4 Reward

In RL, the reward is just a numerical value that the agent receives for interacting with the
world. It represents the agent’s feedback for performing that certain action and the reward
tells the agent how good or bad that action was.

The agent’s entire goal is to maximize the sum of the rewards. In the context of a
game, you maximize the sum of the right moves to win the game.

The reward is just a scalar and often represented as Rt

The return is the cumulative reward that an agent receives when it interacts with an
environment over a sequence of actions. Usually, it is denoted as G.

Gt = Rt+1 +Rt+2 +Rt+3 + ...

2.5 Value

We call the value the expected cumulative reward that an agent can achieve starting from
a particular state or state-action pair. Usually, there are two kinds of values: state values
and action values.

State Value - The expected cumulative reward when starting from a specific state and
following a particular policy thereafter.

Action Value - The expected cumulative reward when starting from a specific state,
taking a particular action, and then following a particular policy thereafter.

For the most part, we are only going to talk about state value.

The state value is denoted as follows:

v(s) = E[Gt|St = s] = E[Rt+1 +Rt+2 +Rt+3 + ...|St = s]
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The action value is denoted as follows:

q(s, a) = E[Gt|St = s,At = a] = E[Rt+1 +Rt+2 + ...|St = s,At = a]

The value depends on the actions the agent takes. The goal is to maximize the value by
picking the most suitable actions in the current state. Both the rewards and values define
the utility of states and actions. However, the reward signal indicates what is good in an
immediate sense, while a value function specifies what is good in the long run.

Both the returns and rewards can be defined recursively, as follows:

Gt = Rt+1 +Gt+1v(s) = E[Rt+1 + v(St+1)|St = s]

2.6 Value maximization

Maximizing the value (the return of your agent) means finding the optimal strategy (pol-
icy) that allows the agent to achieve the highest possible expected cumulative reward of
time.

Using our definition of value, it means finding the best way for the agent to accumulate
the most reward when starting from a particular state by following the policy.

Particularly, in RL we aim to learn and improve the strategy (policy) of the agent
through exploration and exploitation. We will dive deep into this in the next chapter.

2.7 Agent Components

The agent’s state is the current information or observations about the environment that
the agent uses to make decisions. The state at any given time is crucial because the agent’s
strategy of action (policy) depends on it.

Usually the agent cycle starts off with an observation, then a start, then the policy
makes a predict and every state after that follows the same cycle.

Environment state - The current configuration or state of what is perceived by the
agent. This is very different from the agent’s current state. The agent state includes in-
formation about the decision-making process. When we talk about state we usually talk
about this. However, knowing the agent’s state is also important.

Agent state - The information about the agent’s own status, history, or memory. This
is relevant when you are breaking down the components of a very complex ML agent.

The history refers to the sequence of past states, actions, and rewards that the agent
has experienced during its interaction with the environment. It is used to construct the
agent state St. Usually, it is denoted as follows:

Ht = O0, A0, R1, O1, ..., Ot−1, At−1, Rt, Ot

Fully observable - The agent can directly and completely perceive or measure all aspects
of the current state of the environment without any uncertainty or missing information.
This allows the agent to make decisions with perfect knowledge of the environment’s current
conditions. The observation is the environment state.

2.8 Markov Decision Process

The Markov Decision Process (MDP) starts with the assumption of the Markov property.
The Markov property states that future states and rewards depend only on the current
state and no states before then. This simplifies the models of the agent’s interaction with
the environment. It allows us to easily describe the relationships between states, actions,
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and rewards without considering the past states and actions.

The formal notation for an MDP is as follows:

p(r, s|St, At) = p(r, s|Ht, At)

Note this only means that the state contains all we need to know from the history. It
doesn’t mean it contains everything, just the fact that adding more history doesn’t help.

Solving an MDP is just like solving any RL problem where the goal is to find the strategy
(policy) that maximizes the expected cumulative reward. There are many strategies that
do this. MDPs are fundamental in understanding and solving any sequential problems.

2.9 Partially Observable Environments

Partially observable environments are a class of environments where the agent doesn’t have
all the information about the current state. These make the problem of policy optimiza-
tion more difficult. The agent’s observations are incomplete, noisy, or uncertain. The agent
might have access to partial or imperfect information.

Such problems are harder for the agent because now the agent must reason about
uncertainty and maintain a belief or probability distribution over possible hidden states.
Furthermore, the environment state can still be Markov, but the agent does not know it.

To deal with partial observability, the agent can construct suitable state representa-
tions. The following are examples of agent states:

Last observation: St = Ot

Complete history: St = Ht

A generic update: St = u(St−1, At−1, Rt, Ot)

The biggest thing to focus on is an agent state that allows for good policies and value
predictions.

2.10 Agent State

The agent’s state is all the relevant information that the agent uses to make decisions
within the environment. It includes all types of data given to it. The agent’s state is a
function of its history (the sequence of past states, actions, and rewards that the agent
experienced). The agent’s actions depend on its state.

A big thing to note is the difference between the state and observability. The state
represents the information used by the agent for decision-making. Observability refers to
the degree of access the agent has to that information. Observability is a property of the
environment.

More generally, you can define the agent’s state as follows:

St+1 = u(St, At, Rt+1, Ot+1)

In this example, u is the ’state update function’. Another note is that the agent state
is often much smaller than the environment state.

2.11 Policy

A policy is the strategy that an RL agent uses to determine the actions to take in a given
state. It is the mapping of probabilities of selecting each possible action. It maps states to
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action probabilities and completely defines how an RL agent behaves.

Policies can be either deterministic or stochastic. A deterministic policy returns a
specific action to a certain state while a stochastic policy returns a probability distribution
over possible actions. A deterministic policy is represented as follows: A = π(S)
where π is the policy. While a stochastic policy is represented as follows: π(A|S) = p(A|S).

The goal of all of RL is to find the optimal policy that maximizes expected cumulative
reward over time. Reinforcement learning works by improving policies through trial-and-
error interactions with the environment.

2.12 Value Function

A value function is used to estimate and quantify how good or desirable it is for an agent
to be in a particular state or to take a specific action in a given state. They help the agent
make decisions to maximize its cumulative reward over time.

State value functions - Estimates the expected cumulative reward that an agent can
achieve when starting from a specific state (s) and following its current policy thereafter.
V (s) tells us how good it is to be in a particular state if the agent follows its current
strategy (policy).

Agents use value functions to make decisions by selecting actions that maximize their
estimated value. The process of learning and updating these value functions helps the
agent improve its policy over time.

To denote the importance of future rewards we use a discount factor that is denoted as
gamma (γ). It determines how much the agent focuses on immediate versus future rewards
when estimating state value functions. It’s a key hyperparameter in RL models.

The action value function is the expected return with the discount factor that is modeled
as follows:

vπ(s) = E[Gt|St = s, π] = E[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s, π]

The value depends on the policy. It can be used to evaluate the desirability of states
or used to select between actions. The return and value can both be written recursively as
follows:

vπ(s) = E[Rt+1 + γGt+1||St = s,Atπ(s)] = E[Rt+1 + γvπ(St+1)|St = s,Atπ(s)]

In this model, a is the chosen by policy π in state s (even if π is deterministic). This is
also known as a bellman equation, which will be discussed further in a later chapter.

2.13 Model

A model is a simplified copy of the environment that the agent uses to practice and make
plans. ”If I do this action, what might happen next?”

It’s a simplified internal model that the agent uses to simulate and predict how the en-
vironment will behave in response to its actions. They are not always used in RL but can
sometimes be very useful. Their purpose is usually grouped into four buckets: simulation,
policy improvement, uncertainty estimation, and sample efficiency.

There are also problems with models. If models aren’t accurate then they will lead
to sub-optimal decisions. Model-free methods, which learn directly from experience, are
widely used and effective in many scenarios.
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2.14 Prediction and Control

Prediction refers to the agent’s ability to predict future rewards and states. This is done by
learning a model of the environment’s dynamics or estimating value functions. Predictions
allow planning by looking ahead to find optimal actions.

Control refers to the agent’s ability to select actions that maximize reward through in-
teraction with the environment. The agent’s policy maps states to actions with the goal of
maximizing expected return. Control is about optimally interacting with the environment
through action selection.

RL agents aim to leverage both of these capabilities.

2.15 Learning and Planning

Learning is the agent improving its policy through direct experience interacting with the
environment. These methods optimize policies through trial and error without prior knowl-
edge of the environment.

Planning is the agent internally thinking/simulating future situations to decide the best
course of action. The agent uses a model of the environment to search for optimal actions
without taking them.

Both these concepts are incredibly important and will be discussed in more detail in
further chapters.
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3 Exploration vs Exploitation

3.1 RL Recap

Reinforcement learning is the science of learning to make decisions. It revolves around an
agent that learns to make the right decisions in an environment by receiving feedback in
the form of rewards. After many such interactions, the agent learns through experience.

The agent can learn a strategy (policy), a value function, and/or a model. The general
problem of learning can be summarized as taking into account time and the consequences
of actions. Moreover, your decisions after the reward, the agent state, and the environment
state.

3.2 Explore vs Exploit

This is a key trade-off in reinforcement learning.

Exploration - Trying untested actions or visiting unseen states to discover new possi-
bilities. It adds randomness and variance to your policy.

Exploitation - Leverages all the known information to maximize the reward of the pol-
icy. Chooses the best action with the current knowledge, without any randomness. The
problem here is you may maximize short-term gain while missing better long-term oppor-
tunities.

The trade-off is that pure exploitation will get you stuck in a sub-optimal policy, while
too much exploration wastes time trying out bad options. The key is to find a balance in
this chaos. The balance between these two is crucial for efficient and effective reinforcement
learning.

3.3 Multi-Armed Bandit

The multi-armed bandit problem is a fundamental problem in RL that captures the ex-
ploration vs exploitation trade-off. There are many options (”arms”) that can be pulled
by the agent. Each option (arm) is unknown with a fixed average reward probability dis-
tribution. The agent iteratively chooses which arm to pull and receives a reward from the
arm’s distribution. The agent’s goal is to maximize cumulative reward over time by pulling
the optimal arm. The agent doesn’t know which arm is optimal initially and must learn
through experience.

The trade-off is the exploit vs explore problem. To exploit you pull the arm that has
the highest observed average reward so far. To explore you pull less tried arms to get a
better estimate of their averages. We have to learn the policy.

This problem can be modeled as follows: (Ra|a ∈ A). A is the known set of actions.
Ra is a distribution of rewards, given action a. We want to learn a policy on distribution
A. The action value for action a is the expected reward

q(a) = E[Rt|At = a]

Regret - The opportunity cost of not pulling the right arm. The regret for the optimal
action is 0. Can be modeled as follows:

Va − q(a)

Regret is inversely correlated with maximizing the cumulative reward. In order to
maximize the cumulative reward, you can just minimize the total regret. The following
formula is how to minimize the total regret:
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Lt =

t∑
n=1

v∗ − q(An) =

t∑
n=1

∆An

3.4 Greedy Policy

The greedy policy is a policy that always selects the action that maximizes the immediate
reward, without any consideration of future consequences. Remember, the policy is just
the RL agent’s strategy: this is one particular strategy.

It’s formalized as the action with the highest value: At = argmaxa Qt(a)
Equivalently you can write it as: πt(a) = I(At = argmaxa Qt(a))
In this example is the indicator function. It’s just a function that returns 1 when it’s

true and 0 when it’s false.

This policy focuses purely on exploitation. There is no look-ahead that accounts for
any long-term rewards. Moreover, it is a deterministic policy that maximizes the best
immediate action.

The problem with this policy is that you get stuck on a sub-optimal action forever. You
get a linear expected total regret.

3.5 ϵ Greedy

This policy is used to balance between exploration and exploitation by selecting ran-
dom actions with probability ϵ. Most of the time with probability (1-ϵ) it selects the
greedy/exploiting action. With the small probability of ϵ it selects exploration. You can
decay ϵ over time as well.

The advantage of this policy is that it ensures the agent continues to explore new ac-
tions. Moreover, it avoids getting stuck in local optima, unlike purely greedy methods.
Finally, it balances short-term and long-term rewards.

The disadvantage of this algorithm is that it wastes computation evaluating all ac-
tions before picking randomly. Furthermore, the policy is not guiding exploration towards
promising alternatives, it is just doing this at random which is inefficient.

3.6 Policy Gradients

Policy gradients are an RL algorithm that works by optimizing parametric policies to
maximize cumulative reward. A parametric policy is a policy using a set of adjustable
parameters θ. This allows the policy to be optimized by updating parameters θ. The idea
of policy gradients is to learn the policies π(a) directly, instead of learning values.

You can define action preference Ht(a) and a policy:

π(a) =
eHt(a)∑
b e

Ht(b)

The policies themselves are just represented by parameters θ, which is very similar to
neural network weights. The goal is to adjust θ to maximize the expected return J(θ).
You’d want to calculate the gradient to improve the policy with gradient ascent.

The advantage of this is that you can optimize stochastic policies. It handles explo-
ration automatically. Moreover, it scales well to high-dimensional action spaces and can
leverage neural network representation learning.
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The disadvantage of this approach is that estimating gradients has high variance and
choosing the correct neural network architecture is challenging.

In the bandit case example we want to update the following:

θt+1 = θt + a∇θE[Rt|πθt ]

where θt are the current policy parameters.

To understand the optimality of the greedy algorithm, we can use a theorem like Lai
and Robbins which states that the asymptotic total regret is at least logarithmic in the
number of steps.

lim
t→∞

Lt ≥ log(t)
∑

a|∆a>0

∆a

KL(Ra||Ra∗)

This is still a whole lot better than linear growth. The question is whether we can get
it in practice.

3.7 Quantifying Regret

Regret can be quantified in many ways: simple regret, cumulative, instance-dependent,
bays, policy, etc. For the most part, we looking to quantify total (cumulative) regret. The
total regret depends on action regrets ∆a and action counts. Recall that ∆a = v∗ − q(a).
We can model total regret as the following:

Lt =

n=1∑
t

=
∑
a∈A

Nt(a)∆a

A good policy ensures small counts for large action regrets. The regret for the optimal
action is always zero. You maximize as much as possible you always want to look at the
probability density function. The more uncertain you are about a value the more important
it is to explore that action.

3.8 UCB Algorithm

Another algorithm for balancing between the exploration and exploitation problem is UCB
(Upper Confidence Bound). The main idea is you maintain a running average reward
estimate Q(a) for each action a. You also want to track the number of times N(a) each
action has been selected. You then estimate an upper confidence bound Ut(a) as follows:

q(a) ≤ Qt(a) + Ut(a)

You want to select the action maximizing the upper confidence bound (UCB) which is
done as follows:

at = argmax
a∈A

Qt(a) + Ut(a)

The uncertainty should depend on the number of times Nt(a) action a has been se-
lected. If Nt(a) is small then the estimate value is uncertain as you will have a large Ut(a)
and vice-versa.

The intuition here is if your gap is large, then Nt(a) is small, because Qt(a) is likely to
be small. So either the gap is small or Nt(a) is small. This is actually proven by Auer et
al, 2002.

This algorithm is great because it provably achieves logarithmic regret bounds with an
optimal balance of exploration. It’s an effective heuristic for balancing exploration and
exploitation in bandit algorithms via upper confidence bounds.
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3.9 Hoeffding’s Inequality

Hoeffding’s inequality is a probability result that provides an upper bound on the difference
between the true mean of a random variable and its estimated mean from the samples. It’s
used for quantifying uncertainty and guiding exploration in RL. It states the following:

Let X1, ..., Xn be i.i.d random variables in [0, 1] with the true mean µ = E[x], and let
Xt =

1
n

∑n
i=1 Xi be the sample mean. Then,

p(Xn + u ≤ µ) ≤ e−2nu2

You can apply this inequality to bandits with bounded rewards. If Rt ∈ [0, 1] then

p(Qt(a) + Ut(a) ≤ q(a)) ≤ e−2Nt(a)Ut(a)
2

You can also flip it using symmetry with the following:

p(Qt(a)− Ut(a) ≥ q(a)) ≤ e−2Nt(a)Ut(a)
2

3.10 Bayesian Approach

This policy involves maintaining a posterior distribution over the reward parameters of
each arm and selecting arms based on these beliefs. You start with a prior distribution
over the rewards of each arm and as the arms are selected you update the posterior dis-
tribution using Bayes’ rule and the observed rewards. The posterior distribution captures
what has been learned by each arm’s rewards. To select an arm, sample from each arm’s
posterior or compute the expected value.

Here, the trade-off between exploration and exploitation emerges from the sampling
process. You can incorporate rich domain knowledge via the prior and likelihood. The
model distribution can be formalized over value as such:

p(a(a)|θt)

This allows you to inject rich prior knowledge in θ0.

3.11 Thompson Sampling

Another algorithm for balancing the exploration and exploitation problem in RL is Thomp-
son sampling. The idea is to maintain a probabilistic model for the reward distribution
of each action. These can be simple distributions but at each step, you sample a reward
estimate from each action’s distribution. You choose the action with the highest sampled
reward. It is formalized as such:

πt(a) = p(q(a) = max
a′

q(a′)Ht−1)

Probability matching is optimistic in the face of uncertainty. Actions have higher prob-
abilities when either the estimated value is high, or the uncertainty is high. You want
to keep track of posterior distribution (conditional probability conditioned on randomly
observed data) and sample from action values.

The fundamental idea is that after taking the action, you keep updating the distri-
bution with the observed rewards. Over time, the sampled rewards converge to the true
expected values. This is great because it automatically balances exploration and exploita-
tion through sampling. It outperforms other algorithms like epsilon-greed and UCB in
many scenarios. Moreover, it is lightweight and easy to implement.

Cons of this algorithm include the difficulty of tracking posterior distribution with func-
tion approximation and the reliance on accuracy under certain estimates in the models.
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For Bernoulli bandits, Thompson sampling achieves Lai and Robbins lower bound on
regret and therefore is optimal.

3.12 Information State Space

The information state space is the representation of the agent’s knowledge and uncertainty
about the environment at any given point. It’s more general than the observable state
space. The idea here is to view the bandit problem as a sequential decision-making process.

In each step, the agent updates state St to summarize the past. Each action At causes
the transition to a new information state St+1, with probability p(St+1|At, St). Given this,
we have a Markov decision process. The state is fully internal to the agent. All state
transitions are random due to rewards and actions.

The bandit problem is just to explore the limits of explore vs exploit.
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4 Markov Decision Process

A Markov Decision Process (MDP) is a framework for decision-making in situations where
outcomes are partly random and partly under the control of a decision-maker. It provides a
way to find optimal strategies or policies to achieve specific goals in uncertain environments.

4.1 Formalizing the RL Interaction

Components of an RL interaction include two properties. Firstly, the agent is the decision-
maker or learner who interacts with the environment. Secondly, there is an environment,
which is the external system with which the agent interacts. It provides all of the dynamics.

The interaction iterates over time steps. These time steps are discrete and are denoted
as t = 0, 1, 2, ....

At each time step t you have the following:

Observation (Ot): The environment sends an observation to the agent at time step t.
The observation represents the current state of the environment or a partial view of it.
Formally, Ot ∈ O, when O is the set of possible observations.

Agent Policy (π): The agent follows a policy π that maps observations to actions.

Action (At): The agent selects an action At based on the current observation and the
policy, At = π(Ot).

Reward (Rt): After the agent takes action At, the environment provides a numerical
reward Rt. It is the feedback.

State Transition (St+1): The environment transitions to a new state St+1.

The agent’s objective is to learn a policy π that maximizes the expected cumulative
reward over time. This expectation can be formalized as follows:

E[

∞∑
t=0

γtRt]

With a MDP your assumption is that the environment is fully observable. The current
observation contains all relevant information to make the best policy decision. Almost all
RL problems can be formalized as MDPs.

4.2 Defining Markov Decision Process

A Markov Decision Process (MDP) is a type (S,A, p, γ) where: S is the set of all possible
states, A is the set of all possible actions, p(r, s′|s, a) is the joint probability of a reward
r and next state s’, given a state s and action a, and γ ∈ [0, 1] is a discount factor that
trades off later rewards to earlier ones. The probability over the next state can be defined
as follows:

r = E[R|s, a]
p in this example define the dynamics of the problem. Sometimes it is useful to marginal-

ize the state transitions or expected reward as follows:

p(s′|s, a) =
∑
r

p(s′, r|s, a)

The Markov property states that the future state of the system depends only on the
current sate and no past states. The future is independent of the past given the present. In
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a Markov Decision Process, all states are assumed to have the Markov property. The state
captures all relevant information from the history. Once the state is know, the history can
be thrown away.

4.3 Returns

Returns refer to the cumulative rewards that an agent receives when it interacts with an
environment over a sequence of time steps. Immediate returns Rt indicate the results after
acting on an MDP. There are many types of returns, these are the most important:

Undiscounted returns: Refers to the cumulative sum of rewards that an agent receives
over time without discounting future rewards. Each reward is treated with equal impor-
tance. It is derived as follows:

Gt =

∞∑
k=0

Rt+k+1

Discounted returns: Cumulative sum of rewards that an agent receives over time while
applying a discount factor to future rewards. The discount factor, which is between 0 and
1, determines the importance of future rewards relative to immediate rewards. It is derived
as follows:

Gt =

∞∑
k=0

γkRt+k+1

Average returns: Refers to the expected value of the returns an agent receives over
multiple episodes. It is derived as follows:

1

N

N∑
i=1

Gi

4.4 Discounted Returns

Arguably the most important type of return is discounted returns. The discount factor
is really important with regard to future rewards. Immediate rewards are usually more
valuable and thus the discount factor works really well for future returns. It is formalized
as follows for Gt for infinite horizon T →∞:

Gt = Rt+1 + γRt+2 + ... =

∞∑
k=0

γkRt+k+1

The discount γ ∈ [0, 1] is the present value of future returns. Most MDPs are discounted
because immediate rewards may be more valuable (consider the example of earning inter-
est). Moreover, in the real world animal/human behavior shows a preference for immediate
rewards.

4.5 Policies

The policy is the strategy that the agent uses to interact with the environment. It’s used to
make decisions about what actions to take. The formal definition of a policy is as follows:

π : S → A

The value function v(s) gives the long-term value of state s, it is formally defined as
follows:

vπ(s) = E[Gt|St = s, π]
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We can then define state-action values as the following:

qπ(s, a) = E[Gt|St = s,At = a, π]

Note since this is the case, the following is the connection between them:

vπ(s) =
∑
a

π(a|s)qπ(s, a) = E[qπ(St, At)|St = s, π]

4.6 Optimal Value Function

The optimal value function is the maximum value function over all policies. It is formalized
as the following:

V ∗(s) = max
π

vπ(s)

The optimal action-value function q∗(s, a) is the maximum action-value function over
all policies. It is denoted as the following:

q∗(s, a) = max
π

qπ(s, a)

There only exists an optimal policy that is better than or equal to all other policies.
It is a critical concept in RL because it provides a way to evaluate and compare different
policies. The optimal policy, denoted as π∗, is the policy that achieves the maximum ex-
pected cumulative reward and is derived from the optimal value function.

The optimal policy can be found by maximizing over q∗(s, a). There is always a deter-
ministic optimal policy for any MDP. Moreover, there can be multiple optimal values.

4.7 Bellman Equations

The Bellman equations are a set of fundamental equations that express the relationship
between the value of a state and the expected cumulative reward that an agent can obtain
from that state.

One of the most used Bellman equations in RL is the Bellman Optimality Equation.
The Bellman Optimality Equation defines the optimal value function, which represents the
maximum expected cumulative reward an agent can achieve from a state. It is used to find
the optimal policy and is formally defined as follows:

For State-Value function V ∗:

V ∗(s) = max
a

[
∑
s′

P (s′|s, a)[R(s, a, s′) + γV ∗(s′)]]

For Action-Value function Q∗:

Q∗(s, a) =
∑
s′

P (s′|s, a)[R(s, a, s′) + γmax
a′

Q∗(s′, a′)]

Estimating Vπ or qπ is called policy evaluation or simply prediction. Given a policy,
what is my expected return under that behavior? You might also want to estimate policy
optimization or control. What is the optimal way of behaving? What is the optimal value
function?

21



4.8 Dynamic Programming

In RL, dynamic programming is a class of methods that try to learn the optimal behavior
of the value function. These models usually exist in two parts: policy evaluation and policy
improvement.

In policy evaluation, the goal is to determine the value function for a given policy π.
It assesses how good the policy is in terms of expected cumulative rewards. You start off
with an initial estimate of the value function, and policy evaluation iteratively updates the
value function for the policy. The iteration is as follows:

vk+1(s)← E[Rt+1 + γvk(St+1)|s, π]

You stop whenever vk+1(s) = vk(s).

In policy improvement, the goal is to find a better policy than the current one by
selecting actions that improve the expected cumulative rewards. Given the value function
obtained through policy evaluation, policy improvement suggests actions that are likely
to yield higher expected rewards. You then update the policy on these suggestions. The
iteration is as follows:

πnew(s) = argmax
a

qπ(s, a)

Both policy evaluation and policy improvement are typically performed in an iterative
loop. After policy evaluation, policy improvement suggests actions that are better than
the current policy. The policy is then updated, and the process continues.

One final definition that is thrown around a lot is episodic. Episodic refers to the fact
that an agent’s interaction with the environment is divided into episodes. Each episode
represents a distinct task or interaction with a clear starting point and a goal.

4.9 Policy Iteration

Policy iteration is used to find the optimal policy for an agent in an MDP. It combines
both policy evaluation and policy improvement. It is guaranteed to find the optimal policy
and widely used in RL.

You begin by initializing an arbitrary policy π for all states s in S. You iteratively repeat
policy evaluation and policy improvement until convergence. The optimal policy is when
the algorithm terminates and no long changes (basically π stabilizes). the resulting policy
π is the optimal policy.

It is guaranteed to converge and find the optimal policy in a finite number of iterations
for finite MDPs, given that the value function converges during policy evaluation.

4.10 Value Iteration

Value iteration is the process of finding the optimal value function and policy in an MDP.
You receive an input of MDP < S,A, P,R, γ > and output the optimal value function V ∗

and/or policy π∗.

In this iteration, the Bellman optimality equation is used in the update step and is
formalized as the following:

Vnew(s)← max
a∈A

∑
s′

P (s′|s, a)[R(s, a, s′) + γV (s′)]

Moreover, for the policy extraction, for each state s in S, you select the action a that
maximizes the expected value over all actions:
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π∗(s)← argmax
a∈A

∑
s′

P (s′|s, a)[R(s, a, s′) + γV ∗(s′)]

The value iteration is guaranteed to converge to the optimal value function V ∗ and
policy π∗ in a finite number of iterations for finite MDPs, given that the value function
converges during the update steps.

4.11 Full-Width Backups

There is a specific type of backup operation in the context of traversing a search tree or
state space. The backup typically involves updating the value of policy estimates for all
states or nodes at a given level of the search tree before moving to the next level. They
are typically associated with Minimax and Monte Carlo Tree Search (topics that will be
discussed in later chapters).

A full-width backup operation at level l involves updating the value or policy estimates
for all states at that level before proceeding to the next level. This update typically depends
on the specific algorithm being used.
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5 Dynamic Programming

Dynamic programming is the process of breaking down complex sequential decision prob-
lems into simpler sub-problems. It can significantly improve the runtime and memory
usage of your algorithm.

5.1 Normed Vector Spaces

A normed vector space is a vector space that is equipped with a norm. A norm is a function
that assigns a non-negative real number to each vector in the space. The norm of a vector
is a measure of its size of magnitude.

A norm can be used to define a distance metric between vectors, which can be used to
measure the similarity between different solutions. For example, the distance between two
vectors can be defined as the norm of the difference between the vectors. This is important
to determine the closest solution to the problem.

Homogeneity refers to the property of a norm that is unchanged under scalar multi-
plication of a vector. If a vector is scaled by some constant factor, its norm remains the
same. It’s ”homogeneous” in the sense that it has the same properties at all scales.

5.2 Contraction Mapping

Contraction mapping is a mathematical concept that refers to a function on a metric space
that ”contracts” distances between points. It’s a function where the distance between the
function values of two points gets smaller as the points themselves get closer.

Applied to dynamic programming, contraction mappings ensure that applying a certain
function repeatedly will eventually converge to a unique fixed point, which represents the
solution to a problem. It guarantees the convergence of iterative algorithms in dynamic
programming. The goal is to logically test an argument to reveal internal inconsistencies,
false assumptions, or logical fallacies.

A fixed point in contraction mapping is a point that does not change under a particular
function or transformation.

5.3 Banach Fixed Point Theorem

The Banach Fixed Point Theorem states that if you have a complete metric space and a
contractive mapping (a function that makes points closer together) from the space to itself,
then there exists a unique fixed point (a point that the function maps to itself).

It guarantees the existence and uniqueness of a solution to certain types of equations
in mathematics and is useful in solving problems like finding roots of equations or solving
optimization problems.

The speed of convergence is equivalent to the following:

d(x∗, xn) ≤
qn

1− q
d(x1, x0)

d(x∗, xn+1) ≤
q

1− q
d(xn+1, xn)

d(x∗, xn+1) ≤ qd(x∗, xn)
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5.4 Bellman Operators

Bellman operators help solve problems involving sequential decision-making. A Bellman
operator takes a value function and updates it based on the expected future rewards and
transitions in a dynamic system.

Bootstrapping - A statistical re-sampling technique used to estimate the sampling dis-
tribution of a statistic by repeatedly re-sampling, with replacement, from the observed
data. It’s commonly used for estimating the variance, confidence intervals, and other sta-
tistical properties of a sample statistic.

Bellman operators leverage dynamic programming to allow bootstrapping. They up-
date estimates of the value of a state from estimates of the values of subsequent states.
They characterize the optimal solutions that methods converge to.

The following are some bellman operators:

Bellman Policy Operator Bπ (for policy π) operating on VF vector v:

Bπv = Rπ + γPπ ∗ v

Bellman Optimality Operator:

(B ∗ v)(s) = max
a

Ra
s + γ

∑
s′∈S

P a
s,s′ ∗ v(s′)

You can also define a function G mapping a VF v to a deterministic ”greedy” policy
G(v) as follows:

G(v)(s) = argmax
a

Ra
s + γ

∑
s′∈S

P a
s,s′ ∗ v(s′)

5.5 Value Iteration through Bellman Operators

Value iteration through Bellman operators is an iterative loop that optimizes your value
by means of Bellman operators. It goes as follows:

Firstly, initialize a value function V (s) arbitrarily for all states s in the MDP.

Iterate for each state s, while calculating the new value using the Bellman equations:

V (s) = max
a

∑
s′

P (s′|s, a)[R(s, a, s′) + γV (s′)]

You terminate the iteration when the change in V(s) is very small, indicating you have
converged.

Once the values have converged, you can extract the optimal policy by selecting the
action that maximizes the right-hand side of the Bellman equation:

π(s) = argmax
a

∑
s′

P (s′|s, a)[R(s, a, s′) + γV (s′)]

Value iteration involves iteratively updating the value function V(s) for each state s
based on the expected rewards and transitions to neighboring states until convergence.

5.6 Approximate Dynamic Programming

We will now discuss a subset of dynamic programming methods that address the problem of
large-scale complex models where exact solutions are computationally infeasible. It aims to
find approximate solutions to these problems by using function approximation techniques.
Instead of representing and computing values for all states, it uses a function to estimate
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the value function or policy. More often than not, we won’t know the underlying MDP
and we won’t be able to represent the value function exactly after each update.

Approximate value iteration (AVI) is a variation of the standard Value iteration algo-
rithm that uses function approximation to handle large state spaces efficiently. Instead
of maintaining a value function for all states, AVI uses a function approximator, which is
typically a neural network to approximate the value function.

You start with V0) and you update values vk+1 = AT ∗ Vk. Beware, without any
assumptions this point might not converge at all. The estimated value function at iteration
K is vk = vθk . Even for a function approximation case, the theoretical danger of divergence
is rarely materialized in practice. Moreover, there are many value functions that can include
the optimal policy.
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6 Model-Free Prediction

Model-free predictions are the process of estimating the expected cumulative rewards an
agent can achieve in an environment without explicitly modeling the transition dynamics
of the environment. The agent relies strictly on observed experience to make estimates, not
a model of the environment. It is an essential tool enabling RL without explicit planning
models.

This works best on the estimate values where the MDP is unknown. The agent lacks
full knowledge about the dynamics of the environment it is interacting with.

6.1 Monte Carlo Algorithms

Monte Carlo states that the return of a state is simply the mean of the total reward from
when a state appeared onwards. It’s a class of algorithms that relies on repeated random
sampling to obtain results. They leverage random experience and episodic returns to di-
rectly evaluate and optimize policies without requiring a model of the environment.

We can use experience samples to learn without a model. The sampling of episodes
is called Monte Carlo. The agent interacts with the environment to learn the expected
cumulative rewards. The goal of Monte Carlo prediction is to estimate the value function
V (s), which represents the expected cumulative reward starting from state s and following
a given policy π.

6.2 Monte Carlo: Bandits with States

A variation of the multi-armed bandit problem incorporates the concept of states. This
includes an additional consideration of the environment transitioning between different
states. The environment is not in a fixed state but can transition between different states
over time. These states represent different contextual conditions or situations that affect
the outcome of actions.

Now each action is associated with different states that have their own reward distri-
butions. The agent must learn the value of choosing each action in each value state, as
specific by the action space of that state. Monte Carlo policy evaluation can be used to
estimate the state-action value Q(s, a) for each arm in each state.

Monte Carlo methods can very easily be extended to bandit problems with state by
learning action values Q(s, a) for each state using sampled episodic returns. Episodic re-
turns are defined as the total reward accumulated over the course of an episode from the
agent’s perspective. The total reward from a full agent-environment interaction sequence.

Q could be a parametric function, e.g. neural network, and we could use a loss. The
gradient update is to minimize that loss. Now with samples, you can get the stochastic
gradient descent. Below is the formalization with linear functions:

q(s, a) = wTx(s, a)

∆wtqwt(St, At) = x(s, a)

Remember a linear update is just the step size * prediction error * feature vector. A
non-linear update is step size * prediction error * gradient.

6.3 Function Approximation

To learn an optimal policy, the agent needs to estimate the value function V (s) or Q-
function Q(s, a), which estimates the expected long-term return from state s or state-action
pair (s,a). The idea is to use a function, often a mathematical model or a neural network,
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to estimate the value of states or state-action pairs in RL. This idea is really important in
deep reinforcement learning.

Common function approximators include linear regression, neural networks, radial basis
functions, and more. The parameters of the function approximators are learned/updated
through RL algorithms.

Function approximation is crucial to scaling up model-free methods to handle large
state/action spaces. The following are some of the problems with large MDPs: there are
too many states and/or actions to store in memory, it is too slow to learn the value of each
state individually, and individual states are often not fully observable.

6.4 Agent State Update

Agent state update refers to how an agent in an RL system updates its internal representa-
tion of the state when taking actions and transitioning through the environment. Formally
it is defined as the following:

St = uw(St−1, At−1, Ot)

with parameters w (typically w ∈ Rn)

The agent directly observes the state from the environment. After taking an action
At in state St, the environment transitions to a new state St+1 and the agent receives a
reward Rt+1.

6.5 Linear Function Approximation

Linear function approximation is used to represent value functions and policies. For com-
plex problems, representing V (s) or Q(s, a) exactly for all state-action pairs is infeasible.
Linear function approximation generalizes from learned data points.

A linear approximator represents the value function as a linear combination of fea-
tures/bases. The update is the step-size * prediction error * feature vector. This class of
approximators is very computationally efficient and works well with tabular Q-learning.
The only problem is limited expressiveness because it is linear. It may be difficult to
generalize in more complex problems.

6.6 Table Lookup Features

Table lookup features are a type of feature representation commonly used in linear func-
tion approximation for reinforcement learning. The value function is represented as a linear
combination of features. Table lookup features are a simple way to construct these features
from states. A table lookup feature simply returns the value stored in a table for a given
state or state-action pair.

Tables are initialized randomly. As learning progresses, the values stored in the table
are updated to represent useful patterns for predicting the value function. Table lookup
features allow generalizing knowledge from observed states to unseen states based on sim-
ilarity. States with similar value functions will hash to similar table entries.

6.7 Monte-Carlo Policy Evaluation

Monte Carlo policy evaluation is a learning method used to estimate the value function
V (s) for a given policy π. It uses the experience sampled from episodes following π to
evaluate V (s) so there is no model required. In each episode, the returns Gt for visited
states are recorded. The returns are the actual rewards observed. V (s) is approximately
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equivalent to the average returns after s across episodes.

The goal is to learn vπ from episodes of experience under policy π. The return is the
total discounted reward. The value function is the expected return. We just use sample
average return instead of expected return.

6.8 Disadvantages of Monte-Carlo Learning

Monte Carlo methods provide an intuitive model-free approach but lack some of the ad-
vantages in data efficiency and accelerated learning listed below:

High variance: Monte Carlo methods rely on complete episodes and sample returns.
These episodes and sample returns can have high variance in value estimates until a suffi-
cient number of them have already been experienced.

Require exploring starts: To get a good evaluation of a policy, Monte Carlo methods
require every state to be visited numerous times. This often necessitates random explo-
ration starts.

Slower Convergence: Due to the requirement of complete episodes, Monte Carlo meth-
ods take longer to converge.

Large Data Requirement: Monte Carlo methods require a large amount of data in the
form of episodes worth of experience to reach convergence.

High Memory Usage: Full episodes must be stored in memory during learning. This is
a limitation for longer episodes.

Lack of Bootstrapping: Monte Carlo estimates do not benefit from bootstrapping which
is used in temporal difference learning and other methods.

6.9 Temporal Difference Learning

Temporal difference (TD) is a reinforcement learning technique that bridges the gap be-
tween Monte Carlo and dynamic programming methods. Similar to Monte Carlo, TD is
model-free. However, unlike Monte Carlo, TD learning updates estimates based in part
on other learned estimates without waiting for the final outcome. This is known as boot-
strapping.

TD updates a guess towards a target, steadily improving estimates. By bootstrapping
off current estimates, TD can learn before knowing final outcomes. The advantages here
include higher data efficiency, lower variance, and only, fully incremental learning. TD
converges faster than Monte Carlo evaluation in many cases, requiring less experience to
find optimal policies. The Td learning update rule is as follows:

V (s) = V (s) + a ∗ δ

6.10 Bootstrapping and Sampling

Bootstrapping refers to the process of updating a guess towards a target based partially
on the guess itself. An example is in TD learning where the Q(s, a) estimate is updated
towards the target. The key is that the target depends on the estimate.

Sampling refers to observing experience samples from the environment through simula-
tion or real interaction. It generates state transitions, rewards, and more that are used to
train the RL again. In planning methods, sampling refers to simulated experiences from a
model.
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Both bootstrapping and sampling work together. Sampling produces data and boot-
strapping extracts maximal learning.

6.11 Monte Carlo vs Temporal Difference

TD can learn before knowing the final outcome. TD can learn online after every step. MC
must wait until the end of the episode before a return is known.

TD can learn without the final outcome. TD can learn from incomplete sequences.
MC can only learn from complete sequences. TD works on continuing (non-terminating)
environments. MC only works for episodic (terminating environments).

TD is independent of the temporal span of the prediction. TD can learn from single
transitions. MC must store all predictions to update at the end of an episode.

TD needs reasonable value estimates and exploits Markov property. This can be useful
in fully-observable environments. MC doesn’t exploit Markov property which can be helpful
in partially-observable environments.

6.12 Bias/Variance Trade-Off

Bias refers to the error between the expected estimate of a learner and the true value it
is trying to predict. High bias can cause underfitting. On the other hand, variance refers
to how much the estimates vary between different training iterations. High variance can
cause overfitting.

Simpler models tend to have higher bias and lower variance. Complex models have
lower bias but higher variance. Algorithms like dynamic programming have high bias but
no variance. Monte Carly has no bias but high variance. TD learning strikes a balance,
using boostrapping to reduce variance while some bias remains. We want to find the
optimal tradeoff between bias and variance that minimizes total error.

6.13 Batching

Batching refers to updating estimates based on batches of experience samples rather than
online after each sample. This helps with most stability and efficiency of models.

In batched MC, episodes are stored in a dataset. Value estimates are updated by sam-
pling batches of complete episodes to compute sample returns. MC converges to the best
mean-squared fit for the observation.

In batched TD, steps are stored in a replay memory. Batches of experiences are sam-
pled to get state transitions. TD targets are computed and value estimates are updated
per batch. TD converges to the solution of a max likelihood Markov model, given the data.

Batching reduces correlation between samples, lowering variance in updates. It also
allows for more efficient, parallelized computation.

6.14 Multi-step Updates and Returns

Multi-step updates are an enhancement to temporal difference learning. In standard TD
methods, you perform single-step updates. The target is the next one-step estimate. In
multi-step updates, you use an n-step target looking further ahead rather than just the
next state. By using a multi-step target, TD can propagate information quicker along
trajectories.

30



Implementation requires storing the last n steps in memory or generating multi-step
targets via model rollout. Overall, the improved data efficiency over single-step TD re-
mains fully incremental, giving faster convergence on many TD algorithms.

A variation of multi-step returns is mixed multi-step returns. It combines different n-
step returns in TD to reduce variance. You can randomly sample an n between a range. By
mixing different n-step returns, it prevents over-fitting to any single target horizon. This
acts as a form of ensemble learning, averaging over multiple target returns. It combines
the strengths of different target horizons to substantially reduce variance and enhance the
stability of multi-step TD methods.
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7 Model-Free Control

In model-free prediction, our goal was to estimate the value function in an unknown MDP.
Model-free control refers to methods in RL that learn to interact optimally with an envi-
ronment without explicitly building a model of the environment. They learn directly from
experience interacting with the environment, rather than learning a model first.

The greedy policy improvement over v(s) requires model of MDP as follows:

π
′(s)=argmaxa E[Rt+1+γv(St+1)|St=s,At=a]

This makes the action values convenient.

7.1 Generalized Policy Iteration

Generalized policy iteration is a framework in RL that iteratively evaluates and improves
policies. It alternates between a policy evaluation step and a policy improvement step. In
policy improvement, the policy is updated to be greedy with respect to the value function
estimates from the evaluation step. In policy evaluation, the value function V (s) or action-
value function Q(s, a) is estimated for the current policy.

In policy evaluation we usually use a Monte Carlo policy evaluation which is denoted
as follows: q ≈ qπ. In policy improvement, we use the greedy policy with no exploration.

]
Greedy in the limit with Infinite Exploration is a class of RL algorithms that balance

exploitation and exploration by behaving greedily in the limit while continuing to explore
indefinitely. These algorithms become increasingly greedy in the limit. This ensures ex-
ploitation. The algorithms include the following properties:

All state-action pairs are explored infinitely many times

lim
t→∞

Nt(s, a) =∞

The policy converges to a greedy policy

lim
t→∞

πs(a|s) = I(a = argmax
a′

qt(s, a
′)

GLIE model-free control converges to the optimal action-value function qt → q∗.

7.2 Temporal-Difference Learning For Control

TD can be used for optimizing policies as well as for control. In control, TD updates
the prediction of future rewards (also known as the value function) based on differences
between successive predictions. This bootstraps learning off estimated values. Moreover,
TD can be used for policy evaluation in the control setting by evaluating the value function
V (s) or action values Q(s, a) for the current policy.

Temporal difference predictive learning combined with policy iteration techniques is an
important approach for model-free control in complex environments. It has several advan-
tages over Monte Carlo like lower variance, online learning, and the ability to learn from
incomplete sequences.

SARSA (State-Action-Reward-State-Action) is an on-policy TD algorithm for an MDP.
The fundamental idea is simple and common, it’s used to learn how to make decisions in an
environment to maximize it’s cumulative reward. It does this by updating its knowledge
based on the current state, the action taken, the reward received, and the next state.

32



7.3 Off-policy TD and Q-learning

There are multiple ways to find the optimal policy in dynamic programming. Two of the
strategies include off-policy TD and Q-learning.

Off-policy TD refers to the process of learning value functions or policies from data
generated by a different behavior policy than the one being optimized.

Q-learning: An off-policy RL algorithm that aims to learn an optimal policy by learn-
ing action values. It learns optimal behavior through value function approximation and
boostrapping. The state-action pairs are updating using the following:

Q(s, a)← Q(s, a) + α ∗ [r + γ max
a′Q(s′,a′)−Q(s,a)]

7.4 On-policy Learning

On-policy learning is a class of RL algorithms where the agent learns about and improves
the same policy that is used to make decisions. The agent attempts to evaluate or improve
the policy that is used to generate its experience. This is also known as the behavior policy.

This is formalized as the behavior policy π is learned from experience sampled from π.

7.5 Off-policy Learning

In off-policy learning the agent learns by observing and interacting with an environment
using a different policy for exploration than the one it uses to make decisions(exploitation).
Off-policy learning decouples the policy for learning from the policy for action.

This type of learning is important because you can learn an action from other datasets.
For example, you can learn from other humans, that’s using off-policy. Another example
is you can re-use experience from old policies and learn many of them at the same time.

7.6 Q-Learning Control Algorithm

The Q-learning control algorithm converges to the optimal action-value function q → q∗.
This is true as long as we take each action in each state infinitely often. There is no need
for greedy behavior.

You begin by initializing the Q-values for all state-action pairs arbitrarily as Q(s, a) for
all states and actions. The for each epsiode you initialize the stating state s, and iteratively
choose an action a based on the current Q-values and explore rate. You stop when the
terminal state is reached.

The goal of the Q-learning control algorithm is to iteratively update the Q-values based
on the observed rewards, eventually converging to the optimal Q-values that maximize the
expected cumulative reward for each state-action pair.

7.7 Q-Learning Overestimation

Q-learning overestimated refers to the phenomenon where the estimated Q-values for state-
actions pairs in the Q-table are systematically higher than their true values. The overesti-
mation is a phenomenon that occurs in the standard Q-learning update rule.

Recall that standard Q-learning is formalized as follows:

max
a

qt(St+1, a) = qt(St+1, argmax
a

qt(St+1, a)
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You use the same values to select and evaluate but the values are approximate. You are
more likely to select overestimated values and less likely to select underestimated values.
This leads to an upward bias.

Formalized, overestimation arises from the maxa′ Q(s′, a′) term, which takes the maxi-
mum Q-value over all possible actions a’ in the next state s’. If the Q-values are overesti-
mated for some state-action pairs, it can lead to unstable learning. Next we are going to
talk about algorithms to address this problem.

7.8 Double Q-Learning

Double Q-learning is a variant of the Q-learning RL algorithm designed to reduce over-
estimate bias with regards to function approximation. In Q-learning you use the same Q
function to select and evaluate an action, which can lead to overoptimistic value estimates.
Double Q-learning evaluates the action selected by one Q function using the other Q func-
tion.

You maintain two separate Q functions Q1(s, a) and Q2(s, a). Q1 selects the maximiz-
ing action while Q2 evaluates that action. This decouples the action selection and value
estimation roles of the Q function. The result is less biased Q value estimates, since a given
Q is not maximized and evaluated by the same function.

This improves stability and performance of Q-learning with nonlinear function approxi-
mation. Two Q functions can be updated independently with separate experience samples.
Overall, double Q-learning reduces over-estimations in Q-learning by decomposing action
selection and evaluation, which is especially beneficial in function approximation.

7.9 Importance Sampling

The goal of importance sampling is to learn by estimating value from one distribution while
sampling from another distribution. You apply an importance weighting to account for the
difference between the distributions. You way the data by the ratio d

d′ .

The intuition is that you scale up events that are rare under d′, but common under
d. You also scale down events that are common under d′, but rare under d. You use TD
targets generated from µ to evaluate the policy π.

This contains much lower variance than any Monte Carlo algorithm. Moreover, you only
need a single importance sampling correlation. Finally, policies only need to be similar over
a single step.

7.10 Expected SARSA

Expected SARSA is very similar to the standard SARSA algorithm but incorporates the
expected value of the Q-values of possible actions in the next state instead of the Q-value
of the specific action. It is often used when there is a need to balance exploration and
exploitation effectively. It is formally defined as follows:

Q(s, a)← Q(s, a) + α[r + γ
∑
a′

π(a′|s′)Q(s′, a′)−Q(s, a)]

The difference between regular and expected SARSA is the computation of the expected
value of Q-values for all possible actions in the next state s’.

Expected SARSA tends to have better convergence properties than SARSA, especially
when dealing with stochastic environments or when exploration is important. it can provide
a more stable learning process and often converges to a better policy.
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8 Function Approximation

Function approximation is the process for estimating value function or policy functions
when the state space is large or continuous. It is not feasible to store a unique value for
every possible state, so you would approximate it with a function.

The policy, value function, model, and agent state update are all functions,. We want
to learn them from experience. This is often called deep reinforcement learning, where you
use a neural network to approximate these functions.

8.1 Value Function Approximation

Value function approximation is the process of using a function approximator to estimate
the value function. The value function represents the expected long-term return starting
from state s and following the current policy. In many problems, it’s infeasible to store a
unique value for every state, and that’s why function approximators are important.

Value function approximation generalizes from learned samples. Common approxima-
tors can be linear regression models, neural networks, or decision trees. They predict the
value function give a state feature vector.

To train a value function approximator, you sample state transitions and estimated
rewards. The parameters are updated to minimize the error between the predicted and
actual results. An important thing to note here is the fundamental idea of generalization.
Generalization in function approximation depends on how well the function space matches
the true value function. Typically more samples with more diversity will improve approx-
imation accuracy.

With function approximation you trade of accuracy for generalization. The value func-
tion is less accurate but provides useful steps for policy improvement.

8.2 Agent State Update

The agent relies on the function approximator to estimate values and policies for each
visited state. The parameters are updated based on sampled experience to improve the
estimates.

When an environment state is not fully observable, it is formalized as following: (Senv
t ̸=

Ot). The agent-state update itself is formalized as the following:

st = uw(st−1, At−1, Ot)

You can think of this as either a vector inside of an agent or just the current observation.

8.3 Function Classes

The first kind of RL function approximation classes is tabular functions. These refer to
a value function or policy in which there is a table that stores values for each individual
state. The table stores a unique value for every data. There is usually only one entry per
state. Furthermore, that table essentially just acts as a lookup table where you can query
the value of any state by indexing it to that table.

A term that is usually and correlated to function classes is state aggregation. State
aggregation refers to a method whos aim it is to reduce the state space complexity by
grouping similar states together. States taht are similar with respect to the dynamics and
rewards are grouped into the same aggregate state.
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Another example of a function class is linear function approximation. Linear function
approximators are commonly used in RL for their simplicity. Firstly, you consider a fixed
agent state update (St = Ot). You use a fixed feature map and the values are a linear
function of features. State aggregation and tabular classes can be thought of as special
cases of a linear function approximator.

A non-linear or differentiable function approximation is one where vw(s) is a differ-
entiable function of w. You can use a convolutional neural network or other non-linear
functions to learn values. Features are not fixed but are learned.

8.4 Classes of function Approximation

In general, any function approximator can be used to train an RL agent. However, we must
take into account the special properties of RL problems. Usually RL experience is not in-
dependent and identically distributed. The successive time-steps are correlated. Moreover,
the agent’s policy affects the data it receives.

When considering using regression in RL, one must take into account that regression
targets can be non-stationary. This is because of changing policies, boostrapping, non
stationary dynamics, and usually the environment/world is large.

Some facts about common function approximators include:

Tabular function approximation - Good theory but don’t scale and generalize very well.

Linear function approximation - Reasonably good theory, but requires very good fea-
tures.

Non-linear function approximation - Less well understood, but scales well, is flexible,
and less reliant on picking good features first.

8.5 Gradient Descent

Gradient descent is an optimization algorithm most commonly used in training machine
learning models. Here it is used but with function approximators. The idea is to optimize
parameters based on the loss value. By doing this, you lower the model’s error.

Formalized, suppose you have J(w) which is a differential function with parameter vec-
tor. The goal is to minimize J(w). We move w in the direction of the negative gradient,
with α as the step-size parameter.

A concept used a lot in ML is feature vectors. A feature vector is a representation of an
object or observation as a vector of numerical values. It encapsulates key properties of an
observation in a suitable format. This format allows the ML algorithms to process them
and learn them faster.

Another method to represent data and inputs is coarse learning. Coarse learning trades
off precision for memory and computational saving by random, overlapping binary features
to represent data approximately.

8.6 Generalization in Coarse Learning

Coarse learning begins by using a simpler function space that can learning quickly but lacks
the full function space’s precision. Then more complex/precision functions are learned in
the region of interest. Coarse models may involve linear functions, or compressed repre-
sentations.
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Simply, multiple states are aggregated together. This means that the resulting feature
vector or agent state is non-Markovian.

8.7 Linear Value Function Approximation

The idea of linear value function approximation is to use a linear model to estimate the
state-value function the RL problem. The value function Vπ(s) represents the long term
return from state s under the policy π. A linear model is the weighted sum of state features
and can be formalized as follows:

V (s) = w1x1 + w2x2 + ...+ wnxn

x1 to xn are state features and w1 to wn are the learnable weights. Weights are learned
to minimize the mean squared error between predicted and target returns over sampled
states.

Linear function approximation works well when the relationship between state features
and value is close to linear. It scales to handle large state spaces but less expressive than
nonlinear models. The objective function is quadratic in w.

8.8 Monte-Carlo with Value Function Approximation

Monte Carlo can be combined with function approximation to handle problems with large
state spaces. Monte Carlo is used to sample many complete episodes of experience to di-
rectly estimate value functions and policies.

With large or continuous states, tabular storage of the network is not an option. Func-
tion approximators are used to represent the value function and/or policy. The Monte Carlo
experiences are used as training examples to update the function approximator weights.

Function approximation allows Monte Carlo to generalize across the state space based
on the learned features. Moreover, linear Monte Carlo evaluation converges to the global
optimum.

8.9 TD Learning with Value Function Approximation

TD learning tries to estimate the value function V (s) or action-value function Q(s, a) by
bootstrapping. Bootstrapping using the Bellman equation to update estimates because of
other learned estimates. With function approximation a function parameterized by weights
θ is set to represent the value function V (s, θ) or Q(s, a, θ). This allows us to generalize to
unseen states.

The TD target can be formalized as follows: Rt+1 + γvw(St+1). It is a biased sample
of true value. We can still apply supervised learning on training data. For example, we
can use a linear TD function approximator. Problems with this include non-stationary
regression. However, it’s a bit different as the target depends on our parameters.

8.10 Action-Value function approximation

The action-value function is the expected return after taking action in state s and following
the optimal policy thereafter. In tabular learning, we store a table with all these values,
which in practice doesn’t scale up. Using function approximation we approximate Q(s, a)
over all of the state action spaces Q(s, a, θ).

For the update step, we use stochastic gradient descent. A unique paradigm is whether
to use action-in or action-out. In action-in we reuse the same weights while in action-out
we use the same features. If we want to use continuous actions, action-in is easier. For
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discrete action spaces, action-out is common.

Another algorithm used often is linear sarsa with tile coding. An on-policy RL algorithm
that combines both linear function approximation and tile coding to estimate the action-
value function Q(s, a). Tile coding discretizes the state space into small tiles. Each tile is
a binary feature that activates when the state falls in that tile. Tile offsetting is used to
better generalize the model.

8.11 Convergence and Divergence

Convergence and divergence refer to the behavior of a function being approximated as more
data is used to train the model. Convergence refers to the fact that as more and more data
is added, the function approximated becomes closer to the true value. Divergence refers
to the fact that as more data is added to the model, the function approximation is farther
away from the true value. Convergence is a positive thing, while divergence is bad. We
want our function approximation to converge.

More than just convergence, we want to understand when algorithms do and do not
converge. To understand this further, we are going to use two algorithms, Monte Carlo
and TD learning.

Monte Carlo converges to the true value function as the number of episodes increases.
The convergence is guaranteed as long as the episodes are sampled independently and suf-
ficiently to explore the entire space.

TD learning methods perform bootstrapping. They update estimates based on other
learned estimates. This adds some bias to our function but it allows TD to learn before
experiencing all episodes. TD methods converge to the true value function as the step size
parameters decrease over time.

The key difference in the function approximation is that Monte Carlo requires full
episodes to estimate returns while TD can update estimates in incomplete episodes.

8.12 Residual Bellman update

A residual Bellman update is a technique used in RL for improving the convergence of TD
algorithms using function approximation. The idea is to update the function approxima-
tion towards the residual error rather than directly on the TD error.

This technique is really popular in deep reinforcement learning to aid the learning of
the Q-function. It is used to overcome the instability issues of the standard Q-learning up-
dates with function approximation. The residual updates enable more stable and efficient
learning of the Q-function compared to standard Q-learning.

The Q-values are used to estimate the expected cumulative reward of taking a particular
action in a given state. The Residual Bellman update is a way to update these values
iteratively. Firstly, let’s denote the state action value pair as Q(s, a, t), where t is the
time step. The Bellman equation expresses Q(s, a, t) as the sum of the immediate reward
R(s, a). The maximum discounted Q-value of the next state is as follows:

Q(s, a, t) = R(s, a) + γmax(Q(s′, a′, t))

The residual update calculates the difference between the Bellman update and the
current estimate Q(s, a, t). You can update the Q-value using the residual error:

Q(s, a, t+ 1) = Q(s, a, t)− (Q(s, a, t)− [R(s, a) + γmax(Q(s′, a′, t))])

In this example, α is the learning rate which controls the step size of the update.
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8.13 Convergence of Control Algorithms

The main problem with using control algorithms with function approximation is that they
introduce challenges with convergence and stability. Another note is that the theory of
control with function approximation isn’t fully developed. The following are key points of
the convergence of common control algorithms:

Convergence of policy iteration - Converges with linear function approximation if the
policy evaluation step is solved exactly. Approximate policy evaluation can lead to insta-
bility and divergence.

Convergence of value iteration - Less table than policy iteration may diverge with non-
linear function approximation like neural networks.

Convergence of Q-learning - May diverge with nonlinear function approximation due
to overestimation bias. Experience replay may improve stability.

Convergence of actor-critic - Heavily dependent on critic convergence. The policy gra-
dient actor may converge to a sub-optimal policy if the critic diverges.

Convergence in general relies heavily on the stability of the value function estimates.

8.14 Least Squares Temporal Difference

Least squares temporal difference (LSTD) is a learning algorithm in RL that estimates
converging value function estimates with linear function approximation. LSTD learns the
weights of a linear value function approximator by solving the batch least squares regres-
sion problem. It takes the samples of the state transitions and estimates the expected value
function update.

LSTD finds the fixed point of the projected Bellman equation using matrix computa-
tions on the sampled transitions. LSTD converges faster than standard TD methods since
it uses batch learning. It also converges to a more accurate solution than TD since it finds
the least squares fixed point.

In the limit, LSTD and TD converge to the same fixed point. We can extend LSTD
to multi-step returns: LSTD(λ). LSTD in general leverages linear function approximation
and matrix algebra to directly find the optimal value function weights. it does this with
faster converges than standard TD. You can also batch LSTD for larger problems.

8.15 Experience Replay

Experience replay is a method in RL to help stabilize training when using functions ap-
proximation. It’s especially useful when combined with neural networks.

You begin by storing experience transitions, which include the state, action, reward,
and next state, from the agent interacting with the environment. Whilst training, sample
random batches from this buffer to train the function approximator, in contrast to the
most recent transition. The network is then able to train on diverse experiences form the
buffer, de-correlating the training distribution from the sequence of experience transitions.

The reuse of past experiences allows for more efficient use of data. It breaks harmful
correlations and non-stationary distributions caused by online learning. Finally, it allows
for the use of optimization techniques like mini-batch gradient descent that require random
sampling.
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8.16 Deep Reinforcement Learning

Deep RL is a subset of algorithms that use deep neural networks as the function approx-
imator. Deep neural networks are used to estimate the function as they can approximate
complex features and allow the use of high-dimensional state spaces like images. The
biggest problem with these algorithms is training instability.

One of the biggest reasons deep RL works in practice is because of experience re-
play. Experience replay provides us with enough diverse training data to stabilize training.
Moreover, target networks avoid oscillations that are caused by constantly changing Q-
value targets.

Many models leverage deep RL for optimization. Proximal policy optimization clips
network updates to enforce a trust region for policy improvement. Actor-critic methods
leverage deep learning for both state value estimation and policy learning. DQNs combine
experience replay and target nets. There are many more networks that use deep RL. Most
state-of-the-art (SOTA) reinforcement learning models leverage deep RL.
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9 Planning and Models

Planning refers to the use of a model of the environment to perform simulations and
estimate value functions and policies. Many of the methods discussed in this chapter
leverage look ahead in multiple steps and estimation of long-term value functions. This
enables the agent to determine optimal actions beyond myopic heuristic.

9.1 What is a Model?

A model is an agent’s representation of the environment’s dynamics. The model’s goal is
to mimic the behavior of the environment. The concept of models is really important when
dealing with long-term outcomes.

For now, let’s assume the state and actions are the same in the real problem. More-
over, the dynamics are parameterized by some set of weights. Finally, the model directly
approximates the state transitions and rewards.

9.2 Model Learning

A model’s learning is defined as the model’s ability to learn the environment’s dynamics
from experienced data. Two of the main models include the transition model and the
reward model. The transition model P (s′, s|a) predicts the next state s’, given the current
state s and action a. The learning model R(s, a) predicts the reward given state and action.

This can be thought of as a supervised learning problem. You learn from labeled data
with specific inputs and outputs. All learning is done over a dataset of state transitions
observed in the environment. We can learn from a suitable function, a suitable loss function,
and optimize to find the parameters that minimize the empirical loss. Overall, this would
give us an expectation model.

9.3 Expectation Models

An expectation model is a model that learns to predict expected future states and rewards,
given the current state and action. It learns the expected next state s’ given current state
s and action, modeled as E[s′, s|a]. You learn the expected immediate reward given state
and action, E[R|s, a]. Expectation models provide expectations over all possible next states
and rewards, rather than sampling specific outcomes.

These models are really useful for reasoning about long-term expected value. Model-
based methods learn an expectation model and then plan with it. Neural networks can
represent expectation models by predicting the mean of a distribution.

These models can be thought of as models that mimic and predict sensory input based
on an agent’s actions and experience.

Some expectation models do have disadvantages. A very common one is assuming the
environment is stationary. The dynamics of a lot of systems change over time. This leads
to sub-optimal results. Moreover, expectation models have high computational complexity
when dealing with high-dimensional state and action spaces.

9.4 Stochastic Models

Stochastic models are models that incorporate some sort of randomness or uncertainty in
the environment. They are used to capture the probabilistic nature of how an environment
responds to an agent’s action. They’re used in contrast to deterministic models. Deter-
ministic models give a precise output for each input without change.

We don’t want to assume everything is linear. Expected states may not be right. They
may not correspond to actual states, and iterating the model on those inaccurate states
will just make our model inaccurate. This is where stochastic models come into play.
Stochastic models can also be chained, even when the model is non-linear (this does add
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some noise).

Stochastic rewards are rewards an agent receives after taking an action in a certain
state. These rewards themselves can be stochastic, which means when an agent takes the
same action in the same state multiple times, it may receive different rewards each time.
Other uses of stochasticity in RL include transitions and policies.

9.5 Full Models

Full models are models that completely specify the dynamics of the environment. They
provide a detailed and comprehensive description of how the environment behaves in re-
sponse to an agent’s actions. There are two types of full models in RL.

Transition models are models that describe the probability distribution over the next
state and the immediate reward that an agent will receive when it takes a specific action
in a given state. A transition model is defined as follows: P (s′, r|s, a).

Another type of full model is a reward model. A reward model is a model that describes
the dynamics of state transitions and rewards. Reward models focus solely on the reward
component, they specify the expected reward an agent will receive when it takes a specific
action at a given state. Having a full reward model is useful in model-free approaches like
Q-learning.

9.6 Linear Expectation Models

Linear expectation models are models used to estimate expected rewards or returns under
different policies. These models are often used in RL to approximate the value function
or the action-value function in a linear form. We assume some feature representation is
given. Each state s is encoded as ϕ(s). Then, we parameterize the rewards and transitions
separately. The expected new states are parameterized by a square matrix. The rewards
are then parameterized by a vector for each action a. On each transition (s, a, r, s′), we
can apply a gradient descent step.

These models are often used to approximate the value function or action-value function.
An approximation of the value function vπ or the action value function Qπ represents the
expected cumulative reward that an agent can achieve by following a policy π in a given
state or state-action pair. Furthermore, linear expectation models can be extended to a
combination of features, learning parameters, and policy improvement.

9.7 Planning For Credit Assignment

Planning for credit assignment is the process of determining how to attribute credit respon-
sibly for the outcomes an agent receives. You must think of the actions that contributed
to the observed outcome. Usually, these action credits are on a scale. Some actions may
produce a lot better results than others. Planning in general is the process of investing
compute to improve values and policies. Moreover, there is no need to interact with the
environment.

The best planning algorithms are those that don’t require privileged access to the per-
fect specification of the environment (most of the time you won’t have this). An example
of a planning algorithm is temporal credit assignment. An agent’s past actions have no
impact on the rewards it receives in the future. Temporal credit assignment assigns credit
to actions that lead to favorable outcomes and those that don’t in a temporal sequence of
actions and rewards.

There are many different methods for credit assignment. Everything from Monte Carlo
methods to TD learning, and function approximation. Effective credit assignment is fun-
damental. It can very heavily impact an agent’s ability to learn and make good decisions.
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9.8 Dynamic Programming with a Learned Model

Dynamic programming with a learned model refers to the fact of using dynamic program-
ming algorithms in combination with a learned model of the environment’s dynamics. The
benefit of this approach is that dynamic programming is sample efficient and can have op-
timal policies, and when working with unknown environments, the learned model becomes
very important.

Firstly, you learn a model of the environment dynamics by collecting experience in the
environment and fitting a model to predict state transitions and rewards. Then you use
the learned model inside the dynamic programming algorithm. The resulting policy from
dynamic programming can be then used in the real environment.

9.9 Sample-Based Planning with a Learned Model

Sample-based planning with a learned model uses a model of the environment dynamics to
do planning, but relies on taking samples from the model. These types of models are very
useful in practice. Common methods include Monte Carlo tree search, model predictive
controls, and cross-entropy methods.

The advantage of using sample-based planning compared to just dynamic programming
is the scalability to large state spaces. Instead of using the entire state space, a subset is
used. It makes it feasible to do planning with learned models of complex, high-dimensional
environments. In general, you can express the value function for a sample-based method
as follows:

V (s) =
∑
a

π(a|s)
∑
s′

T (s, a, s′)[R(s, a) + γV (s′)]

9.10 Limits of Planning with an Inaccurate Model

A problem with planning an inaccurate model is that the planning process may compute
a sub-optimal policy. A sub-optimal policy is one where the planning algorithm may make
incorrect assumptions. The upper bound performance of the policy is how inaccurate the
model is.

Another problem is model bias. The policy itself may exploit inaccurate policies in
the learning model that do not exist in the real environment. This leads to policies that
perform very poorly in the actual environment.

Problems with planning an inaccurate model include that the planning process may
compute a sub-optimal policy, performance is limited to optimal policy for approximate
MDP, and model-based RL is only as good as the estimated model.

To address the issues of an inaccurate learned model, when the model is wrong we
gravitate to using model-free RL. Moreover, we can reason about model uncertainty using
Bayesian models. Finally, we can combine both model-based and model-free methods in a
single algorithm.

9.11 Real and Simulated Experience

Real experience is experience interacting with the actual environment. This means the
agent takes actions in a genuine, physical environment and receives feedback from that
environment. The problem with this approach is that it’s costly and time-consuming to
collect real experience. Moreover, there may be safety concerns when iterating with the
real environment. Formalized, this means that data is sampled from the MDP.
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In simulated experience, the model learns from experience interacting with a simulated
or virtual environment. The environment is usually one we generate ourselves. This is a
lot more cost-efficient as you can run simulations quickly. Furthermore, you have all the
control over the environment. The problem with simulation is the difficulty of representing
all of the complexities in the world. Training on an approximation MDP may not transfer
well to the real world.

9.12 Dyna-Q

Dyna-Q is an algorithm that combines model-free RL and model-based planning to improve
sample efficiency. The model learns directly from environment interactions with simulated
experiences generated by a model. It augments regular Q-learning by using a model to
generate additional simulated experiences and data from updating Q-value estimates.

Specifically, it learns two functions simultaneously. A Q function estimates the value
and a model of the environment dynamics. Planning happens by propagating Q values
through simulated experiences gathered by the learned model. The balance of model-
based planning vs real experience is controlled by a hyperparameter.

Dyna-Q provides more efficient learning than pure model-free methods by leveraging a
learned model. You can focus planning on more promising states by sampling simulated
experiences. The problem with Dyna-Q is the fact that you are possibly dependent on a
insufficiently accurate model and a lot of compute for both model learning and planning.

9.13 Advantages of Combining Learning and Planning

One of the largest advantages of combining learning and planning is sample efficiency.
Planning with a learned model allows for generating simulated experience. Moreover, com-
bining both increases your long-horizon reasoning as the planning algorithms can more
efficiently assign rewards than model-free methods.

End-to-end learning is the formalization of the combination of learning and planning.
End-to-end learning refers to an algorithm that learns to perform a task by learning from
raw input data. The model takes raw data as input and outputs predictions or decisions
directly, without requiring hand-engineered feature extraction - the process of transforming
raw data into numerical features that can be processed.

With end-to-end learning, the whole pipeline is optimized together. It removes the
separation between perception and control. It has a lot higher potential for better general-
ization and transfer compared to relying on fixed hand-designed representations. Finally,
end-to-end learning gives you the ability to leverage function approximation like deep nets.

9.14 Planning and Experience Replay

Traditional RL algorithms do not explicitly store their experiences. Model-free methods
update the value function and/or policy and do not have an explicit dynamics model.
Model-based methods update the transitions and reward model and compute a value func-
tion or policy from the model. Planning with a learned model generates simulated ex-
periences that allow for convergence of the state space, and real experience helps with
transferring problems to the real environment in production.

Overall, planning provides the direction and primes value estimates for unexplored
states. The experience replay anchors these to real-world outcomes, which also prevents
the model from exploitation. The experience replay provides diverse data from the envi-
ronment to improve the model. The model can then focus planning on promising unseen
trajectories.
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This balance can be tuned based on model accuracy. With a good model, more planning
simulations are helpful. with high uncertainty, more real experience is emphasized.

9.15 Comparing Parametric Model and Experience Replay

For tabular RL there is an exact output equivalent between model-based and model-free
algorithms If the model is perfect, it will give the same output as a non-parametric replay
system for every (s, a) pair. However, in practice, the model is not perfect.

In a parametric model in general, we learn an explicit representation of environment
dynamics. The model can then be used to generate a simulated experience for planning.
Usually, it generalizes to unseen states based on training data. The accuracy of such a
model depends on the amount and diversity of real experience. Simulated experience may
compute model errors.

Experience replay stores real experience transitions in a buffer - a data structure that
stores experience collected from interacting with the environment. Experience can be re-
sampled to improve sample experiences. The model doesn’t provide a lot of generalization,
as it is real observed data.

The balance of models depends on the uncertainty in the model vs the amount of real
experience. Moreover, there are different planning algorithms that can be used. Backward
planning refers to a model with inverse dynamics that assigns credit to different states that
could have led to a certain outcome. Jumpy planning refers to long-term credit assignments
but at different time scales.

9.16 Planning for Action Selection

Planning for action selection utilized a model to search and simulate possible future sit-
uations in order to select the best action in the current state. Some planning algorithms
include tree search search like Monte Carlo tree search. Generally, planning is used to
improve a global value function. In action selection, we consider planning for the near
future, to select the next action.

The distribution of states that may be encountered from now can differ from the distri-
bution of states encountered from a starting state. The agent may be able to make a more
accurate local value function than the global value function. Inaccuracies in the model
may result in interesting exploration rather than bad updates.

The core idea is that in all cases you use a model to forecast outcomes of actions and
leverage this look-ahead to make informed action selections. This then allows for choosing
actions optimal over a longer time horizon.

9.17 Forward Search

Forward search refers to the fact that a model is used to simulate possible future states
starting from the current state in order to evaluate which action to take next. The best
action is selected by lookahead. A model of the MDP is used to look ahead. Forward
search builds a search tree with the current state St as the root.

Forward search starts at the current state and simulates forward in time to generate
possible future trajectories. A tree or graph of future states and transitions is incremen-
tally built up through these simulated rollouts. Each node in the search tree represents a
state, which branches for possible actions and transitions from that state.

The use of such an algorithm is important when evaluating the long-term consequences
of actions. Moreover, it allows you to focus computation on more promising trajectories.
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However, these benefits depend heavily on a sufficiently accurate model and the computa-
tion time needed for search.

9.18 Simulation-Based Search

Simulation-based search is an adaptation of forward search that uses samples. The simu-
lation refers to episodes of experiences from now with the model. The theory is to apply
model-free RL to simulated episodes.

A simulation model is used on system dynamics that provide the ability to generate sim-
ulated experiences, such as by sampling from a learned model. Search algorithms leverage
this simulation capability to evaluate long-term cumulative rewards for action sequences.
Action sequences are incrementally built up through successive simulations. Common
simulation-based algorithms include Monte Carlo tree search, cross-entropy methods, and
model predictive control.

9.19 Control via Monte-Carlo Simulation

Monte Carlo methods can be applied for control in RL and planning problems. A tree is
built with alternating layers of states and actions from the root state. Every state node
branches to child actions, and actions branch to the next state. Monte Carlo rollouts are
simulated from leaf nodes using a model of environment dynamics.

Given a model and a simulation policy, for each action: simulate K episodes from cur-
rent (real) state s and evaluate actions by mean returns (Monte Carlo evaluation). Select
the current action with the maximum value.

One of the biggest benefits of Monte Carlo simulation for control is the use of online
planning - focusing computation on current decisions. Another benefit is the ability to
handle uncertainty through stochastic rollouts. Finally, given sufficient computation, you
get a provably optimal control.

9.20 Monte-Carlo Tree Search

Monte Carlo tree search is a simulation-based search algorithm that is very common in
RL. It’s used by a lot of state-of-the-art RL models. The idea is to use a search tree that
incrementally grows with states as nodes and actions as edges. The tree grows asymmet-
rical to focus on more promising branches.

You start by selecting nodes until you reach a leaf node of the tree, picking actions
according to q(s, a). We expand the search tree beyond a single node every time. The
update is the action-values q(s, a) for all state-action pairs in the tree.

Effectively, we have two simulation policies. A tree policy that improves during search
and a rollout policy that is held fixed. This may often be picking actions randomly.

The advantages of a Monte Carlo tree search stem from a highly selective best-first
search. We evaluate the state dynamically. Furthermore, the algorithms use sampling to
break the curse of dimensionality and they work for models we don’t understand. Moreover,
we only require samples of the data.

9.21 Search Tree and Value Function Approximation

Search trees explicitly represent possible future states and transitions stemming from a
root state. A search tree is just a table lookup approach, based on a partial instantiation
of the table. Value functions estimate expected long-term rewards for states.
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For model-free RL, table lookup is naive. We can’t store the values for all states.
Moreover, it doesn’t generalize between similar states. For simulation-based search, a ta-
ble lookup is a lot better. The search tree stores values for easily reachable states, while not
generalizing between similar states. For huge search spaces, value function approximation
is helpful.

Search trees support focused planning from particular states while value function allows
generalization. Using them together can improve efficiency and quality of planning. The
value function goes the search while the search tree provides the targets for value function
learning.
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10 Policy Gradient and Actor Critics

Policy gradient methods are methods that directly optimize the policy function, which
maps from states to actions. The objective is to maximize the expected cumulative reward
by adjusting the policy’s parameters. Actor-critic combines both policy-based and value-
based methods. The actor is the policy network and the critic is the value function. Actor
critic provides for more stable learning.

Overall, model-based RL provides for easy learning as you can use supervised learning.
It learns all the data there is to know, but may use compute on irrelevant details. The
computing policy (planning) is non-trivial and expensive in compute terms.

Value-based RL provides a really easy way to generate a policy: π(a|s) = I(a =
argmaxa q(s, a)). It is also really close to the true objective and fairly well understood.
However, it still isn’t the true objective. Small value errors can lead to larger policy errors.

All methods generalize in different ways. Sometimes learning a model is easier while
other times learning a policy is easier.

10.1 Advantages and Disadvantages of policy-based RL

An advantage of policy-based RL is that the policies are stochastic. In environments of
high uncertainty, this is really important. Moreover, in a high-dimensional action space,
such algorithms generalize really well. These algorithms can be extended to continuous
spaces as well. Finally, sometimes policies are simple while values and models are complex,
we can deal with complicated dynamics.

Disadvantages with policy-based RL include the problem of sample inefficiency. They
often require an inefficient number of samples which is data and compute intensive. In
addition, there may be high variance in the gradient computations. Lastly, such algorithms
don’t necessarily extract all useful information from the data, especially when used in
isolation.

10.2 Stochastic Policies

In MDPs, there is always an optimal deterministic policy, but for most problems they are
not fully observable. This is the common case, especially with function approximations.
The optimal policy may be stochastic. Moreover, the search space is smoother for stochastic
policies since we can use gradients. It also provides some exploration during learning.

10.3 Policy Objective Functions

The goal of any policy objective function is that give policy πθ(s, a), find the best param-
eters θ. But how do we measure the quality of a policy πθ? In episodic environments, we
can use the average total return per episode, whilst in continuing environments we can use
the average reward per step.

The episodes-return objective can be formalized as follows:

JG(θ) = ES0 d0,πθ
[

∞∑
t=0

γtRt+1]

= ES0 d0,π0
[G0]

= ES0 d0
[E[Gt|St = S0]]

= ES0 d0
[vπθ

(S0)]

d0 is the state-state distribution. This objective equals the expected value of the start
state.
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The average-reward objective can be formalized as follows:

JR(θ) = Eπθ
[Rt+1]

Est dπθ
[EAt πθ(St)[Rt+1|St]]

dπ(s) = p(St = s|π) is the probability of being in state s in the long run.

Policy-based RL is just an optimization problem. We aim to find θ that maximized
J(θ). Some approaches do not use gradients, but one of the most popular optimization
algorithms with stochastic gradient ascent. We want to maximize the gradient of the
objective function J(θ).

10.4 Contextual Bandits Policy Gradients

We consider a one-step case of contextual bandits and formalize it as J(θ) = Eπθ
[R(S,A)].

We cannot sample Rt+1 and then take the gradient. Rt+1 is just a number a does not
depend on θ. However, we can use an identity for this problem:

∆θEπθ
[R(S,A)] = Eπθ

[R(S,A)∆θlogπ(A|S)]

The right-hand side gives an expected gradient that can be sampled. The stochastic
policy-gradient update is just:

θt+1 = θt + αRt+1∆θlogπθt(At|St)

10.5 Score Function

The score function trick, also known as the likelihood ratio trick, is used in policy radient
RL to estimate the gradient of the expected reward with respect to the policy parameters.
It uses the score function to cleverly estimate the gradient and bypasses the intractable
expected value integral. This is something we can sample. In expectation, the stochastic
policy-gradient update is the actual gradient. The intuition is to increase the probability
of actions with high rewards.

The formalization of the score function trick is as follows: Let rsa = E[R(S,A)|S =
s,A = s].

∆θEπθ
[R(S,A)] = ∆θ

∑
s

d(s)
∑
a

πθ(a|s)rsa

=
∑
s

d(s)
∑
a

rsa∆θπθ(a|s)

=
∑
s

d(s)
∑
a

rsaπθ(a|s)
∆θπθ(a|s)
πθ(a|s)

=
∑
s

d(s)
∑
a

πθ(a|s)rsa∆θlogπθ(a|s)

= Ed,πθ
[R(S,A)∆θlogπθ(A|S)]

10.6 Policy Gradient Theorem

The policy gradient approach also applies to multi-step MDPs. You can replace the reward
R with long-term returns Gt or value qπ(s, a). Again there are two policy gradients, average
return per episode and average reward per step.

The formalization of average return per episode is as follows: For any differentiable
policy πθ(s, a), let d0 be the starting distribution over states in which we begin an episode.
Then, the policy gradient of J(θ) = E[G0|S0 d0] is:
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∆θJ(θ) = Eπθ
[

T∑
t=0

γtqπθ
(St, At)∆θlogπθ(At|St)|S0 d0]

where

qπ(s, a) = Eπ[Gt|St = s,At = a]

= Eπ[Rt+1 + γqπ(St+1, At+1)|St = s,At = a]

On the other hand, the formalization for the average reward is as follows: For a differ-
entiable policy πθ(s, a), the policy gradient of J(θ) = E[R|π] is

∆θJ(θ) = Eπ[Rt+1

∞∑
n=0

∆θlogπθ(At−n|St−n)]

Note that the expectation is over both states and actions.

10.7 Episodic Policy Gradient Algorithm

The episodic policy gradient algorithm is an RL algorithm that is a subset of the policy
gradient algorithm. The characteristics of each episode are that i has a finite length and a
has a defined terminal state.

The primary objective of the episode policy gradient algorithm is to learn a policy that
maximizes the expected cumulative reward over the course of an episode. You start by
initializing the policy network with random parameters θ. Then, collect multiple episodes
by following the current policy, storing the states, actions, and rewards observed in each
episode. We then compute the gradient of the expected cumulative rewards with respect
to θ by using the policy gradient algorithm. Finally, we update the policy parameters θ in
the direction that increases the expected rewards and iterate.

The advantage of using the episodic gradient policy algorithm is that it suffices for
solving episode tasks where the optimal policy is stochastic. Moreover, it works well in
both discrete and continuous action spaces. The disadvantage is that it’s sample inefficient
and requires a lot of episodes to learn.

10.8 Continuous Action Spaces

When directly updating the policy parameters, continuous action is easier. the problem is
that high-dimensional continuous spaces can be challenging. The agent can choose from
an infinite set of possible actions, in contrast to a discrete space of finite and distinct actions.

To handle continuous action spaces, RL algorithms like deep deterministic policy gra-
dient and trust region policy optimization are used. These algorithms parameterize the
policy as a continuous function and optimize it directly. They provide finer control but
are harder to fully explore and optimize. When directly updating the policy parameters,
continuous actions are easier.

10.9 Continuous Actor-Critic Learning Automation (CACLA)

CACLA is an RL algorithm for continuous action spaces that combines actor-critic methods
with deterministic policy gradients. It combines deterministic policy gradients with deep
actor-critic learning to enable effective RL with high-dimensional continuous action spaces.

The primary idea is that we can define the error in action space, rather than parameter
space. Firstly we start with the current action proposal at = Actorθ(St). We then explore
the environment using: At π(∗|St, at) and compute the TD error δt = Rt+1 + γvw(St+1)−
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vw(St). Finally, for policy evaluation we update vw(St) and for policy improvement update
using the following:

θt+1 ← θt + β(At − at)∆θtActorθt(St)
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11 Approximate Dynamic Programming

Approximation dynamic programming refers to methods that combine function approxi-
mation with dynamic programming. These types of methods are really common for solving
large-scale MDPs.

Dynamic programming algorithms require complete sweeps over the state and action
space which is not possible for really large spaces. Function approximation works on gen-
eralizing functions to solve the large space problem.

The Bellman optimality operator refers to an iterative application of value functions
to obtain the optimal values. It’s one of the fundamental concepts of programming for
MDPs. If we don’t know the underlying MDP, we may be subject to sampling/estimation
errors as we don’t have access to true operators. The objective is under the conditions of
no underlying MDP and the inability to represent the value function after every update,
we come up with a policy that is optimal.

11.1 Approximate Value Iteration

Approximation value iteration (AVI) is a subset of algorithms that represent and learn the
value function from iteration of dynamic programming. In standard value iteration, the
value function is represented as a table with entries for each state. The problem is this
doesn’t scale well for large spaces. Instead, we can represent the value function using a
function approximation. This works really well for generalization.

Approximation value iteration proceeds by applying Bellman updates as normal using
the current approximation value function. The updates change the estimated values, which
are then used to improve the value function approximation parameters.

Overall, approximate value iteration aims to retain the strengths of value iteration
for optimal planning using function approximation to improve scaling and generalization
across large state spaces.

Formalization of approximation value iteration starts with q0. We then update values
qk+1 = ATqk. We return the control policy:

πk+1 = Greedy(qk+1)

The performance of AVI is provided by Bertsekas Tsitsiklis, 1996. Considering an
MDP, and letting qk be the value function return by aVI after k steps and letting πk be
its corresponding greedy policy, then:

||q∗ − qπn
||∞ ≤

2γ

(1− γ)2
max

0≤k<n
||T ∗qk −AT ∗qk||∞ +

2γn+1

(1− γ)
ϵ0

11.2 Fitted Q-Iteration with Linear Approximation

Fitted q-learning with linear function approximation refers to using linear models to rep-
resent the Q-function in the fitted Q-iteration RL algorithm. Using a linear model allows
generalization over states, but you must assume that Q is well-approximated linearly. The
benefits of such algorithms include computational efficiency and the ability to incorporate
prior knowledge via features.

Formalized, fitted Q-iteration with linear approximation iteratively updates values ev-
ery iteration k as follows:

qk+1 = argmax
qw∈F

1

nsamples

n∑
i=1

(Yt − qw(St, At))
2
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11.3 Approximate Policy Iteration

Approximate policy iteration is an algorithm that uses function approximation that scales
up policy iteration using dynamic programming on a large problem. In policy iteration,
the policy and value functions are represented as lookup tables which do not scale well.

In the policy evaluation step, we generate samples from the MDP using the current pol-
icy. We estimate the value function by minimizing the MSE or TD error with samples using
gradient descent on w. We iteratively alternate between evaluation and improvement steps.

Formally, consider an MDP and let qk and πk be the value functions and respectively
evaluated greedy policy achieved by API at iteration k, is:

lim supk→∞||q∗ − qπk
||∞ ≤

2γ

(1− γ)2
limsupk→∞||qk − qπk

||∞
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12 Off-Policy and Multi-Step Learning

Off-policy is an RL approach where the agent learns from data generated by a different
policy than the one it’s following. It can be thought of as learning from someone else’s
experience. Such methods can be really useful in sample efficiency and stability in training.
Off-policy learning is really important to learn about hypothetical, counterfactual infor-
mation.

Multi-step learning is a technique where the agent calculates the cumulative reward of
a series of n consecutive time steps, rather than at every single step. It helps speed up
learning by considering the long-term consequences of actions.

12.1 One-step Off-policy

One-step off-policy learning refers to a type of off-policy RL where the agent learns from
experiences generated by a different policy for just one step. The Q-values update is based
on immediate transitions from the current state to the next state.

With action values, one-step off-policy learning seems relatively straightforward:

q(St, At)← q(St, At) + αt(Rt+1 +
∑
a

π(a|St+1)q(St+1, a)− q(St, At))

Such a method is used across a variety of methods including Q-learning, expected Sarsa,
and regular Sarsa.

12.2 Multi-step Off-policy

Exactly like our definition before, multi-step learning is where an agent learns from expe-
riences in n-consecutive time steps. This approach allows the agent to consider long-term
consequences of its actions and make updates to its Q-values or policy based on these
multi-step transitions.

In multi-step off-policy learning, the agent accumulates rewards and updates its Q-
values or policy using the n-step return, which is the sum of rewards over the n steps. For
multi-step updates, we can use importance-sampling corrections.

For example, for a Monte Carlo return on a trajectory τt = St, At, Rt+1, ..., ST :

Gt =
p(τt|µ)
p(τt|µ)

Gt

In contrast to off-policy, we can sample multi-step on policy returns Gt as:

E[Gt|π] = qπ(s, a)

12.3 Issues in Off-policy Learning

The two biggest problems with off-policy learning are the problems of high variances (es-
pecially) when using multi-step updates) and divergence/inefficient learning (when using
one-step updates).

Off-policy methods often require a large amount of data to be effective, especially when
the behavior policy and the target policy are significantly different. This can make train-
ing really expensive. To account for the fact that data is generated by a different policy,
importance sampling is used.

Importance sampling is what leads to common issues of high variance in the estimates.
To mitigate this problem, we use per-decision importance weighting. First, consider some
state s. For any random X that does not correlate with action A, we have:
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E[X|π] = E[
π(A|s)
µ(A|s)

X|µ] = E[X|µ]

The theory here is that the expectation does not depend on the policy so we don’t need
to correct it.

12.4 Control Variates for Multi-step Returns

Control variates aim to reduce the variance of estimators. They’re used to estimate the
expected return or cumulative return of an agent’s policy more accurately and efficiently.
Let’s consider the idea of control variates for multi-step returns, the per-decision impor-
tance weights can be formalized as follows:

δλt = δt + γλδλt+1

δpλt = pt(δt + γλdeltapλt+1)

you can show that:

E[δpλt |µ] = E[Gpλ
t − v(St)|µ]

is the per-decision improtance-weighted λ return.
In general, control variates, are used to make our estimates of the expected return more

accurate and reduce the variance of our RL algorithms, which can lead to faster and more
stable learning.

12.5 Adaptive Bootstrapping

Bootstrapping is a method to estimate the value function to update the value function
itself. It allows the agent to learn from its own estimates rather than relying on external
rewards/outcomes from an environment. Adaptive bootstrapping means dynamically ad-
justing the degree of bootstrapping used during learning. Early on, the value estimates
won’t be accurate so we want to rely on external rewards, but later on, we want to rely on
bootstrapping a lot more.

We don’t want to bootstrap too much because of inaccurance and randomness, and
we don’t want to bootstrap too little because it leads to high variance. The idea is to
bootstrap adaptively only in as much as you go off-policy. It initial bootstrap parameter
that is time-dependent can formalized as:

δpλt = λtpt(δt + γδpλt+1)

We can pick λt, separately on each interval and the idea is to get:

λt = min(1,
1

pt
)

A note is that we are free to choose different ways to bootstrap. In the tabular case all
these methods will be updated towards some mixture of multi-step returns, and therefore
converge.

12.6 Tree Backup

Tree backup is another algorithm used to estimate state-value functions. It can be thought
of as an extension of TD learning. Just like TD methods, tree backup bootstraps off es-
timated values of subsequent states to update the value of the current state. However,
instead of sampling a single subsequent state, tree backup builds a lookahead tree of pos-
sible future state to a fixed depth.
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The idea is that the expectation of a bellman operator on action values does not depend
on the policy, because we condition the the action a. So if we sample the operator and
only replace the action select, we get:

Gt = Rt+1 + γ
∑

a̸=At+1

π(a|St+1)q(St+1, a) + γπ(At+1|St+1)Gt+1

This is amazing because it’s unbiased, and low variance!
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13 Introduction to Deep Reinforcement Learning

Deep reinforcement learning are method that uses deep neural nets as function approx-
imators. Rather than using linear functions or shallow neural nets, we use deep neural
networks as the function approximator. We use this because, in practice, tabular RL does
not scale to large complex problems as there are too many states to store in memory, and
is too slow to learn the values of each state separately. We want to generalize across states.

We want to use gradient descent to iteratively minimize the objective of functions:

∆θt = −
1

2
α∆θL(θ) = αES d[vπ(s) = vθ(S)∆θvθ(S)]

13.1 Deep Value Function Approximation

Deep value function approximation refers to deep neural nets used to represent the value
function in RL. The value function V (s) represents the expected cumulative future reward
starting from state s. The parameterized function Vθ is just a linear mapping. A deep neu-
ral net to used to parameterize mappings. It’s useful to discover feature representations
tailored to a specific task.

An example of a deep neural net is to use a multilayer perceptron:

vθ(S) = W2tanh(W1S + b1) + b2

We can represent each of these computations with direct acyclic graphs. DAGs represent
the sequence of operations to compute some quantity.

13.2 Automatic Differentiation

One of the optimization techniques is gradient descent. Gradient descent requires differ-
entiating based on certain variables. Manual differentiation is tedious and error-prone.
Automatic differentiation (autograd) automatically applies the chain rule at the granular-
ity of individual operations. It is used in many machine-learning libraries.

If we know how to compute gradients of individual nodes., we can compute gradients
of any node with respect to any other, in one backward step. Finally, we accumulate the
gradient products along paths, sum gradients and sum gradients when paths merge.

13.3 JAX and PyTorch

JAX and PyTorch are open-source machine learning framework libraries. They’re focused
on autograd and GPU acceleration. There are many of these autodiff frameworks to com-
pute gradients.

You can think of JAX and PyTorch as Numpy + Autodiff + Accelerators.

13.4 Deep Q-learning

Deep Q-learning uses deep neural networks to approximate the Q-value function in RL.
This allows for the handling of larger observation spaces. We use a neural network to
approximate qθ : Ot → Rm. First, we map the input state to an h-dimensional vector. We
then apply a non-linear transformation and map the hidden vector to the m action values.

The loss in deep learning is usually written as a gradient of pseudo-loss:

L(θ) =
1

2
(Rt+1 + γ[max

a
qθ(St+1, a)]− qθ(St, At))

2
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13.5 Friendlier Data Distributions

Friendlier data distributions are distributions that are easier and more stable for the neu-
ral network to learn from. The goal is to make the underlying relationshipas clean and
consistent as possible by carefully shaping the training data.

There are different online updates with the data samples. You can use a buffer of past
experience or a learned model of the environment. Both approaches can reduce the corre-
lation between consecutive updates and support mini-batch updates instead of stochastic
gradient descent. Moreover, you can use better online algorithms, optimizers, or change
the environment for better data distributions.

13.6 The Deadly Triad in Deep RL

The deadly triad in deep RL refers to algorithms that cause instability and cause the
models to diverge. The three algorithms are function approximation, bootstrapping, and
off-policy learning.

Function approximation - The use of function approximation introduces generalization
error and approximation limitations.

Bootstrapping - Algorithms like Q-learning bootstrap by using their own estimated
values to update the value function. Errors reinforce future errors.

Off-policy learning - Updates estimates from data generated by a behavior policy dif-
ferent from the target policy from being learned. This introduces bias.

Individually these are not problems, but used together they cause problems. Strategies
to mitigate the triad include experience replay, target networks, clipped double Q-learning,
distributed RL, and combining on/off policy data.

Target networks cause soft divergence but still cause value estimates to be quite poor
for extended periods.

13.7 Deep Double Q-learning

Deep double Q-learning is a variant of DQN that helps address the deadly triad issues in
deep RL. Double Q-learning maintains two separate Q-networks, using one to select the
maximizing action and the other to evaluate it. This decouples the action selection and
value estimation roles.

The problem with DQN is overestimating the values of selected actions since the target
network provides a detached estimate. Deep double Q-learning mitigates this bias, and
results in a more conservative value estimate. This is formalized as:

L(θ) =
1

2
(Ri+1 + γ[qθ − (Si+1, argmax

a
qθ(Si+1, a))]− qθ(Si, Ai))

2

13.8 Prioritized Reply

Prioritized experience replay is a technique to sample more important experiences more
frequently during training. In regular experience replay, transitions (s, a, r, s′) are stored
in a replay buffer and sampled randomly to break correlations. Prioritized replay assigns
a priority value to each experience, indicating how useful it is expected to be for training.
The priority can be determined based on TD error when the transition was processed.

By skewing sampling towards more informative experiences, a prioritized replay can
accelerate and stabilize RL training. The basic implementation of the priority of a sample
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is as follows:
i = |δi|

where δi was the TD error on the last transition as sampled.

13.9 Multi-step Control

Multi-step controls refer to algorithms that consider multiple future steps rather than just
the one-step immediate reward. Multi-step control looks further ahead y unrolling future
trajectories over multiple timesteps. This allow optimizing actions that may have low im-
mediate reward but high long-term reward. Multi-step targets allow for trade-off bias and
variance. They also reduce our reliance on bootstrapping. This reduces the likelihood of
divergence.

The two main approaches are tree based search and multi-step bootstrapping. Both
these methods look beyond immediate rewards to evaluate actions based on longer-term
consequences.

13.10 RL aware Deep learning

The success of deep learning comes from encoding the right inductive basis in the network
structure. For example, in image recognition CCNs are commonly used. For long-term
memory architectures like Transformers and LSTMs are commmonly used. We shouldn’t
just copy architectures designed for supervised problems.

An example of RL-aware training is having the loss function dynamically change based
on feedback in a closed loop as the model interacts with an environment. By making
training interactive and tuning the loss adaptively based on external feedback, the model
is steered toward better generalization dn avoiding blind spots.

13.11 Dueling Networks

Dueling networks are used in deep RL to better estimate state-value functions. They
separately estimate the state value V (s) and action advantages A(s, a), then combine them
to produce the Q-values:

Q(s, a) = V (s) +A(s, a)

This decouples the value estimation and makes convergence faster compared to regular
Q-networks. The state value stream focuses on assessing the overall goodness of states
without regard to specific actions.

13.12 Network Capacity and Generalization

In supervised deep learning we can often find that more data + more capacity = better
performance. The loss is easier to optimize, and there is less interference. Target networks
typically perform better overall, but they are more suseptible to the deadly triad.

The key to network capacity is the number of layers, the number of units per layer,
connectivity patterns, activation functions, and the optimization algorithm. Excessive ca-
pacity can lead to overfitting. The goal is to strike a balance between underfitting and
overfitting through careful architectural design and regularization.

One thing to note is that the deadly triad shows the generalization in RL can be tricked.
The TD learning with deep function approximation may ”leak”.
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14 Deep Reinforcement Learning

In this chapter, we dive deep into RL. Many deep RL algorithms only optimize for a
very narrow objective. Narrow objectives induce narrow state representations. Narrow
representation can’t support good generalization. Our agents should strive to build rich
knowledge about the world, you must learn about more than just the main task reward.

14.1 The Reward Hypothesis

The reward hypothesis is the idea that spare and delayed rewards make RL tasks more
difficult to solve. Spare rewards that occur rarely provide a limited learning signal. More-
over, delayed rewards hamper credit assignment to earlier actions.

Dense rewards are useful because they make it clear which actions contributed to the
reward. Delayed and sparse rewards obscure the relationship between actions and out-
comes. Shaping the reward to activate more fernery and immediately can dramatically
simply and accelerate RL.

All goals can be represented as a maximization of scalar rewards. All useful knowledge
may be encoded as predictions about rewards. For instance, in the form of general value
functions.

14.2 General Value Functions

A general value function in RL for representing arbitrary predictive knowledge about an
environment in a value function framework. Traditional value functions like V (s) or Q(s, a)
represent expected cumulative future reward from state to state-action. GVFs provide a
value function framework to learn to predict any expectation over future states, not just
rewards. GVFs use both bootstrapping and TD learning to update predictions.

A GVF is conditioned on more than just state and actions can be formalized as:

qc,γ,π(s, a) = E[Ct+1 + γt+1Ct+2 + γt+1γt+2Ct+2 + ...|St = s,At+i π(St+1)]

where Ct = c(St) and γt = γ(St) where St could be the environment state.

14.3 Predictive State Representations

Predictive state representations are a framework for RL that represents the agent’s state
in terms of predictions of future observable quantities. In PSTs, the model is represented
by predictions of future observable events, rather than explicitly environment states. We
use the predictions themselves as representations of the state. We learn policy and values
as a linear function of these predictions.

PSRs avoid issues of partial observability states and hidden variables. the learning
focuses on building a predictive model rather than reconstructing unobserved true states.
Overall, they are just alternatives for state representation for RL based entirely on observ-
able predictions.

14.4 GVFs as Auxilary Tasks

GVFs can be used as auxiliary tasks as well. The auxiliary tasks include those that share
part of the neural network, minimize jointly the loss of the main task reward, and force
the shared hidden layers to be more robust.

Similar to the idea of general functions on auxiliary tasks is transfer learning. Transfer
learning involves using knowledge gained from one task to improve performance on another
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related task. Transfer learning can help speed up training and improve performance in new
tasks.

Both GVFs and transfer learning are related in the fact that they can facilitate knowl-
edge transfer in RL scenarios.

14.5 Value-Improvement Path

The value improvement path is the concept that outlines the process of improving the
value function of an agent step by step. Initially, the value function is usually initialized
randomly or with some default values. the first step is the path to policy evaluation. The
agent evaluates how good its current policy is by estimating the value function for the
policy. After evaluating the current policy, the agent can decide to improve it. We repeat
the policy evaluation and improvement until we converge to an optimal solution.

We regularize the representation of the value-improvement path during learning because
we need to approximate many value functions. This is true because we are tracking a
continuously improving agent policy. All functions in the value improvement path must
support Qπ0 to Qπ∗

.

14.6 Trade-offs in Multi-task Learning

Multi-task learning is a paradigm where a single model is trained to perform multiple
related tasks simultaneously. Instead of training a separate model for each task. The
idea is that the knowledge learned from one task can benefit the learning of other tasks.
However, there are multiple trade-offs with this approach.

Interference vs benefit is one of the trade-offs. When learning multiple tasks together,
there can be interference between tasks. Improving performance on one task may decrease
the performance on another. In contrast, if the tasks are related, then the whole model
benefits.

Another tradeoff is complexity vs performance. More tasks can increase the complexity
of the model. A more complex model requires more data and computational resources.
Moreover, complex models increase the risk of overfitting. On the other hand, model
complexity is usually correlated with better performance.

14.7 Adaptive Target Normalization

Adaptive target normalization is a technique that’s used in the context of deep learning
to normalize the target values or labels during training. Normalization means scaling the
target values to standard randing, often between 0 and 1.

The adaptive aspect of normalization means the normalization parameters are deter-
mined during the training process. This is different from fixed formalization where they
are pre-computed based on the training data. The benefits of ATN are when dealing with
problems where the target distribution varies or changes over time. It allows the model to
adapt its normalization strategy to the specific data it is encountering, potentially leading
to more stable and accurate training.

14.8 Distributional RL

Distributional RL is a variation of RL that focuses on modeling and learning the entire
probability distribution of future rewards for an agent in an environment. With traditional
RL, we only estimate the expected value of future functions.

This is useful because GVFs still represent predictive knowledge in the form of ex-
pectations. We should move to learn towards a distribution of returns rather than just
approximating the expected value. Moreover, this provides us with a richer learning signal
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which can help us learn more robust representations.

Distributional RL is important for dealing with uncertainty and risk-aware decision-
making in RL. It has applications in understanding the full spectrum of possible outcomes
that are essential.

14.9 Categorical Return Distributions

Categorical return distributions are probability distributions in distributional RL where
the goal is to model and learn the entire probability distribution of future rewards an
agent can receive in a given environment. You can learn a good categorical approximation
or the true return distribution.

Begin by considering a fixed distribution on z = (−10,−9.9, ..., 9.9, 10)T . For each point
of support, we assign a probability piθ(St, At). The approximate distribution of the return
s and a is the tuple (z, pθ(s, a)). Our estimate of the expectation is:

zT pθ(s, a) ≈ q(s, a)

14.10 Quantile Return Distributions

Quantile return distributions are an idea of modeling the entire distribution of future
rewards. Rather than estimating just the expected value or a categorical distribution,
quantile return distributions focus on estimating a set of quantiles for the reward distribu-
tion.

Quantiles are values that partition a probability distribution into equal parts. An exam-
ple is the median which is the 50th percentile. We transpose the parameterization instead
of adjusting the probabilities of the fixed support. We can adjust the support associated
with a fixed set of probabilities.

The advantage of such a distribution is it offers a detailed view of the reward distri-
bution, allowing the agent to make decisions that consider the entire spectrum of possible
outcomes. They can be advantageous in tasks where understanding tail risks or specific
percentiles in a distribution.
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