Want more content like this? Subscribe here to be notified of new releases!
Distribution tables
By Afshine Amidi and Shervine Amidi
Standard Normal distribution
Notations
Let us note the random variable $Z$ that follows the standard normal distribution, i.e. which is such that:
\[Z\sim\mathcal{N}(0,1)\]
We note $z_\alpha$ as follows:
\[z_\alpha=\Phi_Z^{-1}(1-\alpha)\quad\textrm{i.e}\quad \alpha=\int_{z_{\alpha}}^{+\infty}f_Z(z)dz=1-\Phi_Z(z_\alpha)\]
with $\Phi_Z$ the cumulative distribution of $Z$
Distribution table
For one-tailed tests, the value of interest is $z_{\alpha}$, whereas for two-tailed tests, we have to look at $z_{\frac{\alpha}{2}}$Confidence level | 80% | 85% | 90% | 95% | 98% | 99% | 99.5% | 99.9% |
$\alpha$ | 0.20 | 0.15 | 0.10 | 0.05 | 0.02 | 0.01 | 0.005 | 0.001 |
$z_{\alpha}$ | 0.842 | 1.036 | 1.282 | 1.645 | 2.054 | 2.326 | 2.576 | 3.090 |
$z_{\frac{\alpha}{2}}$ | 1.282 | 1.440 | 1.645 | 1.960 | 2.326 | 2.576 | 2.807 | 3.291 |
$t$ distribution
Notations
Let us note the random variable $T$ that follows a $t$ distribution of $n$ degrees of freedom, i.e. which is such that:
\[T\sim t_n\]
We note $t_\alpha$ as follows:
\[t_\alpha=\Phi_T^{-1}(1-\alpha)\quad\textrm{i.e}\quad \alpha=\int_{t_{\alpha}}^{+\infty}f_T(t)dt=1-\Phi_T(t_\alpha)\]
with $\Phi_T$ the cumulative distribution of $T$
Distribution table
$\alpha$ \ $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
0.20 | 1.38 | 1.06 | 0.98 | 0.94 | 0.92 | 0.91 | 0.90 | 0.89 | 0.88 | 0.88 | 0.88 | 0.87 | 0.87 |
0.10 | 3.08 | 1.89 | 1.64 | 1.53 | 1.48 | 1.44 | 1.41 | 1.40 | 1.38 | 1.37 | 1.36 | 1.36 | 1.35 |
0.05 | 6.31 | 2.92 | 2.35 | 2.13 | 2.02 | 1.94 | 1.89 | 1.86 | 1.83 | 1.81 | 1.80 | 1.78 | 1.77 |
0.025 | 12.7 | 4.30 | 3.18 | 2.78 | 2.57 | 2.45 | 2.36 | 2.31 | 2.26 | 2.23 | 2.20 | 2.18 | 2.16 |
0.01 | 31.8 | 6.96 | 4.54 | 3.75 | 3.36 | 3.14 | 3.00 | 2.90 | 2.82 | 2.76 | 2.72 | 2.68 | 2.65 |
0.005 | 63.7 | 9.92 | 5.84 | 4.60 | 4.03 | 3.71 | 3.50 | 3.36 | 3.25 | 3.17 | 3.11 | 3.05 | 3.01 |
0.001 | 318.3 | 22.3 | 10.2 | 7.17 | 5.89 | 5.21 | 4.79 | 4.50 | 4.30 | 4.14 | 4.03 | 3.93 | 3.85 |
$\alpha$ \ $n$ | 15 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 40 | 50 | 100 | 200 | $+\infty$ |
0.20 | 0.87 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.84 | 0.84 |
0.10 | 1.34 | 1.33 | 1.33 | 1.32 | 1.32 | 1.31 | 1.31 | 1.31 | 1.30 | 1.30 | 1.29 | 1.29 | 1.28 |
0.05 | 1.75 | 1.73 | 1.72 | 1.72 | 1.71 | 1.71 | 1.70 | 1.70 | 1.68 | 1.68 | 1.66 | 1.65 | 1.65 |
0.025 | 2.13 | 2.10 | 2.09 | 2.07 | 2.06 | 2.06 | 2.05 | 2.04 | 2.02 | 2.01 | 1.98 | 1.97 | 1.96 |
0.01 | 2.60 | 2.55 | 2.53 | 2.51 | 2.49 | 2.48 | 2.47 | 2.46 | 2.42 | 2.40 | 2.36 | 2.35 | 2.33 |
0.005 | 2.95 | 2.88 | 2.85 | 2.82 | 2.80 | 2.78 | 2.76 | 2.75 | 2.70 | 2.68 | 2.63 | 2.60 | 2.58 |
0.001 | 3.73 | 3.61 | 3.55 | 3.50 | 3.47 | 3.43 | 3.41 | 3.39 | 3.31 | 3.26 | 3.17 | 3.13 | 3.09 |
$\chi^2$ distribution
Notations
Let us note the random variable $K$ that follows a $\chi^2$ distribution of $n$ degrees of freedom, i.e. which is such that:
\[K\sim \chi_n^2\]
We note $q$ the quantile of the distribution.
Distribution table
$q$ \ $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 13 |
0.005 | 0.00 | 0.01 | 0.07 | 0.21 | 0.41 | 0.68 | 0.99 | 1.34 | 1.73 | 2.16 | 2.60 | 3.57 |
0.01 | 0.00 | 0.02 | 0.11 | 0.30 | 0.55 | 0.87 | 1.24 | 1.65 | 2.09 | 2.56 | 3.05 | 4.11 |
0.025 | 0.00 | 0.05 | 0.22 | 0.48 | 0.83 | 1.24 | 1.69 | 2.18 | 2.70 | 3.25 | 3.82 | 5.01 |
0.05 | 0.00 | 0.10 | 0.35 | 0.71 | 1.15 | 1.64 | 2.17 | 2.73 | 3.33 | 3.94 | 4.57 | 5.89 |
0.95 | 3.84 | 5.99 | 7.81 | 9.49 | 11.07 | 12.59 | 14.07 | 15.51 | 16.92 | 18.31 | 19.68 | 22.36 |
0.975 | 5.02 | 7.38 | 9.35 | 11.14 | 12.83 | 14.45 | 16.01 | 17.53 | 19.02 | 20.48 | 21.92 | 24.74 |
0.99 | 6.63 | 9.21 | 11.34 | 13.28 | 15.09 | 16.81 | 18.48 | 20.09 | 21.67 | 23.21 | 24.72 | 27.69 |
0.995 | 7.88 | 10.60 | 12.84 | 14.86 | 16.75 | 18.55 | 20.28 | 21.95 | 23.59 | 25.19 | 26.76 | 29.82 |
$q$ \ $n$ | 15 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 40 | 50 | 100 |
0.005 | 4.60 | 6.26 | 7.43 | 8.64 | 9.89 | 11.16 | 12.46 | 13.79 | 20.71 | 27.99 | 67.33 |
0.01 | 5.23 | 7.01 | 8.26 | 9.54 | 10.86 | 12.20 | 13.56 | 14.95 | 22.16 | 29.71 | 70.06 |
0.025 | 6.26 | 8.23 | 9.59 | 10.98 | 12.40 | 13.84 | 15.31 | 16.79 | 24.43 | 32.36 | 74.22 |
0.05 | 7.26 | 9.39 | 10.85 | 12.34 | 13.85 | 15.38 | 16.93 | 18.49 | 26.51 | 34.76 | 77.93 |
0.95 | 25.00 | 28.87 | 31.41 | 33.92 | 36.42 | 38.89 | 41.34 | 43.77 | 55.76 | 67.50 | 124.34 |
0.975 | 27.49 | 31.53 | 34.17 | 36.78 | 39.36 | 41.92 | 44.46 | 46.98 | 59.34 | 71.42 | 129.56 |
0.99 | 30.58 | 34.81 | 37.57 | 40.29 | 42.98 | 45.64 | 48.28 | 50.89 | 63.69 | 76.15 | 135.81 |
0.995 | 32.80 | 37.16 | 40.00 | 42.80 | 45.56 | 48.29 | 50.99 | 53.67 | 66.77 | 79.49 | 140.17 |