Distribution tables takeaway
Standard Normal distribution
Notations
Let us note the random variable $Z$ that follows the standard normal distribution, i.e. which is such that:
$$Z\sim\mathcal{N}(0,1)$$
We note $z_\alpha$ as follows:
$$z_\alpha=\Phi_Z^{-1}(1-\alpha)\quad\textrm{i.e}\quad \alpha=\int_{z_{\alpha}}^{+\infty}f_Z(z)dz=1-\Phi_Z(z_\alpha)$$
with $\Phi_Z$ the cumulative distribution of $Z$
Distribution table
For one-tailed tests, the value of interest is $z_{\alpha}$, whereas for two-tailed tests, we have to look at $z_{\frac{\alpha}{2}}$
| Confidence level | 80% | 85% | 90% | 95% | 98% | 99% | 99.5% | 99.9% |
|---|---|---|---|---|---|---|---|---|
| $\alpha$ | 0.20 | 0.15 | 0.10 | 0.05 | 0.02 | 0.01 | 0.005 | 0.001 |
| $z_{\alpha}$ | 0.842 | 1.036 | 1.282 | 1.645 | 2.054 | 2.326 | 2.576 | 3.090 |
| $z_{\frac{\alpha}{2}}$ | 1.282 | 1.440 | 1.645 | 1.960 | 2.326 | 2.576 | 2.807 | 3.291 |
$t$ distribution
Notations
Let us note the random variable $T$ that follows a $t$ distribution of $n$ degrees of freedom, i.e. which is such that:
$$T\sim t_n$$
We note $t_\alpha$ as follows:
$$t_\alpha=\Phi_T^{-1}(1-\alpha)\quad\textrm{i.e}\quad \alpha=\int_{t_{\alpha}}^{+\infty}f_T(t)dt=1-\Phi_T(t_\alpha)$$
with $\Phi_T$ the cumulative distribution of $T$
Distribution table
| $\alpha$ \ $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.20 | 1.38 | 1.06 | 0.98 | 0.94 | 0.92 | 0.91 | 0.90 | 0.89 | 0.88 | 0.88 | 0.88 | 0.87 | 0.87 |
| 0.10 | 3.08 | 1.89 | 1.64 | 1.53 | 1.48 | 1.44 | 1.41 | 1.40 | 1.38 | 1.37 | 1.36 | 1.36 | 1.35 |
| 0.05 | 6.31 | 2.92 | 2.35 | 2.13 | 2.02 | 1.94 | 1.89 | 1.86 | 1.83 | 1.81 | 1.80 | 1.78 | 1.77 |
| 0.025 | 12.7 | 4.30 | 3.18 | 2.78 | 2.57 | 2.45 | 2.36 | 2.31 | 2.26 | 2.23 | 2.20 | 2.18 | 2.16 |
| 0.01 | 31.8 | 6.96 | 4.54 | 3.75 | 3.36 | 3.14 | 3.00 | 2.90 | 2.82 | 2.76 | 2.72 | 2.68 | 2.65 |
| 0.005 | 63.7 | 9.92 | 5.84 | 4.60 | 4.03 | 3.71 | 3.50 | 3.36 | 3.25 | 3.17 | 3.11 | 3.05 | 3.01 |
| 0.001 | 318.3 | 22.3 | 10.2 | 7.17 | 5.89 | 5.21 | 4.79 | 4.50 | 4.30 | 4.14 | 4.03 | 3.93 | 3.85 |
| $\alpha$ \ $n$ | 15 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 40 | 50 | 100 | 200 | $+\infty$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.20 | 0.87 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.84 | 0.84 |
| 0.10 | 1.34 | 1.33 | 1.33 | 1.32 | 1.32 | 1.31 | 1.31 | 1.31 | 1.30 | 1.30 | 1.29 | 1.29 | 1.28 |
| 0.05 | 1.75 | 1.73 | 1.72 | 1.72 | 1.71 | 1.71 | 1.70 | 1.70 | 1.68 | 1.68 | 1.66 | 1.65 | 1.65 |
| 0.025 | 2.13 | 2.10 | 2.09 | 2.07 | 2.06 | 2.06 | 2.05 | 2.04 | 2.02 | 2.01 | 1.98 | 1.97 | 1.96 |
| 0.01 | 2.60 | 2.55 | 2.53 | 2.51 | 2.49 | 2.48 | 2.47 | 2.46 | 2.42 | 2.40 | 2.36 | 2.35 | 2.33 |
| 0.005 | 2.95 | 2.88 | 2.85 | 2.82 | 2.80 | 2.78 | 2.76 | 2.75 | 2.70 | 2.68 | 2.63 | 2.60 | 2.58 |
| 0.001 | 3.73 | 3.61 | 3.55 | 3.50 | 3.47 | 3.43 | 3.41 | 3.39 | 3.31 | 3.26 | 3.17 | 3.13 | 3.09 |
$\chi^2$ distribution
Notations
Let us note the random variable $K$ that follows a $\chi^2$ distribution of $n$ degrees of freedom, i.e. which is such that:
$$K\sim \chi_n^2$$
We note $q$ the quantile of the distribution.
Distribution table
| $q$ \ $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 13 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.005 | 0.00 | 0.01 | 0.07 | 0.21 | 0.41 | 0.68 | 0.99 | 1.34 | 1.73 | 2.16 | 2.60 | 3.57 |
| 0.01 | 0.00 | 0.02 | 0.11 | 0.30 | 0.55 | 0.87 | 1.24 | 1.65 | 2.09 | 2.56 | 3.05 | 4.11 |
| 0.025 | 0.00 | 0.05 | 0.22 | 0.48 | 0.83 | 1.24 | 1.69 | 2.18 | 2.70 | 3.25 | 3.82 | 5.01 |
| 0.05 | 0.00 | 0.10 | 0.35 | 0.71 | 1.15 | 1.64 | 2.17 | 2.73 | 3.33 | 3.94 | 4.57 | 5.89 |
| 0.95 | 3.84 | 5.99 | 7.81 | 9.49 | 11.07 | 12.59 | 14.07 | 15.51 | 16.92 | 18.31 | 19.68 | 22.36 |
| 0.975 | 5.02 | 7.38 | 9.35 | 11.14 | 12.83 | 14.45 | 16.01 | 17.53 | 19.02 | 20.48 | 21.92 | 24.74 |
| 0.99 | 6.63 | 9.21 | 11.34 | 13.28 | 15.09 | 16.81 | 18.48 | 20.09 | 21.67 | 23.21 | 24.72 | 27.69 |
| 0.995 | 7.88 | 10.60 | 12.84 | 14.86 | 16.75 | 18.55 | 20.28 | 21.95 | 23.59 | 25.19 | 26.76 | 29.82 |
| $q$ \ $n$ | 15 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 40 | 50 | 100 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.005 | 4.60 | 6.26 | 7.43 | 8.64 | 9.89 | 11.16 | 12.46 | 13.79 | 20.71 | 27.99 | 67.33 |
| 0.01 | 5.23 | 7.01 | 8.26 | 9.54 | 10.86 | 12.20 | 13.56 | 14.95 | 22.16 | 29.71 | 70.06 |
| 0.025 | 6.26 | 8.23 | 9.59 | 10.98 | 12.40 | 13.84 | 15.31 | 16.79 | 24.43 | 32.36 | 74.22 |
| 0.05 | 7.26 | 9.39 | 10.85 | 12.34 | 13.85 | 15.38 | 16.93 | 18.49 | 26.51 | 34.76 | 77.93 |
| 0.95 | 25.00 | 28.87 | 31.41 | 33.92 | 36.42 | 38.89 | 41.34 | 43.77 | 55.76 | 67.50 | 124.34 |
| 0.975 | 27.49 | 31.53 | 34.17 | 36.78 | 39.36 | 41.92 | 44.46 | 46.98 | 59.34 | 71.42 | 129.56 |
| 0.99 | 30.58 | 34.81 | 37.57 | 40.29 | 42.98 | 45.64 | 48.28 | 50.89 | 63.69 | 76.15 | 135.81 |
| 0.995 | 32.80 | 37.16 | 40.00 | 42.80 | 45.56 | 48.29 | 50.99 | 53.67 | 66.77 | 79.49 | 140.17 |
CME 106 - Probability and Statistics for Engineers