Trigonometry refresher
By Afshine Amidi and Shervine Amidi
Definitions
Trigonometric functions The following common trigonometric functions are $2\pi$-periodic and are defined as follows:
Function | Domain | Image | Definition | Derivative |
Cosine | $\theta\in\mathbb{R}$ | $\cos(\theta)\in[-1,1]$ | $\cos(\theta)=\frac{\textrm{adjacent}}{\textrm{hypotenuse}}$ | $\displaystyle\frac{d\cos(\theta)}{d\theta}=-\sin(\theta)$ |
Sine | $\theta\in\mathbb{R}$ | $\sin(\theta)\in[-1,1]$ | $\sin(\theta)=\frac{\textrm{opposite}}{\textrm{hypotenuse}}$ | $\displaystyle\frac{d\sin(\theta)}{d\theta}=\cos(\theta)$ |
Tangent | $\theta\in\mathbb{R}\backslash\{2k\pi\}$ | $\tan(\theta)\in]-\infty,+\infty[$ | $\tan(\theta)=\frac{\sin(\theta)}{\cos(\theta)}=\frac{\textrm{opposite}}{\textrm{adjacent}}$ | $\displaystyle\frac{d\tan(\theta)}{d\theta}=1+\tan^2(\theta)$ |
Euler's formula The following formula establishes a fundamental relationship between the trigonometric functions and the complex exponential function as follows:
Therefore, we have:
Inverse trigonometric functions The common inverse trigonometric functions are defined as follows:
Function | Domain | Image | Definition | Derivative |
Arccosine | $x\in[-1,1]$ | $\textrm{arccos}(x)\in[0,\pi]$ | $\cos(\textrm{arccos}(x))=x$ | $\displaystyle\frac{d\textrm{arccos}(x)}{dx}=-\frac{1}{\sqrt{1-x^2}}$ |
Arcsine | $x\in[-1,1]$ | $\textrm{arcsin}(x)\in[-\frac{\pi}{2},\frac{\pi}{2}]$ | $\sin(\textrm{arcsin}(x))=x$ | $\displaystyle\frac{d\textrm{arcsin}(x)}{dx}=\frac{1}{\sqrt{1-x^2}}$ |
Arctangent | $x\in]-\infty,+\infty[$ | $\textrm{arctan}(x)\in]-\frac{\pi}{2},\frac{\pi}{2}[$ | $\tan(\textrm{arctan}(x))=x$ | $\displaystyle\frac{d\textrm{arctan}(x)}{dx}=\frac{1}{1+x^2}$ |
Trigonometric identities
Pythagorean identity The following identity is commonly used:
Inverse trigonometric identities The following identities are commonly used:
Addition formulas The following identities are commonly used:
Name | Formula |
Cosine addition | $\cos(a+b)=\cos(a)\cos(b)-\sin(a)\sin(b)$ |
Sine addition | $\sin(a+b)=\sin(a)\cos(b)+\sin(b)\cos(a)$ |
Tangent addition | $\displaystyle\tan(a+b)=\frac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}$ |
Product-to-sum and sum-to-product identities The following identities are commonly used:
Name | Formula |
Product-to-sum | $\displaystyle\cos(a)\cos(b)=\frac{1}{2}(\cos(a-b)+\cos(a+b))$ $\displaystyle\sin(a)\sin(b)=\frac{1}{2}(\cos(a-b)-\cos(a+b))$ $\displaystyle\sin(a)\cos(b)=\frac{1}{2}(\sin(a+b)+\sin(a-b))$ $\displaystyle\cos(a)\sin(b)=\frac{1}{2}(\sin(a+b)-\sin(a-b))$ $\displaystyle\tan(a)\tan(b)=\frac{\cos(a-b)-\cos(a+b)}{\cos(a-b)+\cos(a+b)}$ |
Sum-to-product | $\displaystyle\cos(a)+\cos(b)=2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$ $\displaystyle\cos(a)-\cos(b)=-2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$ $\displaystyle\sin(a)+\sin(b)=2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$ $\displaystyle\sin(a)-\sin(b)=2\sin\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right)$ |
Symmetry identities The following identities are commonly used:
By $\alpha=0$ | By $\alpha=\frac{\pi}{4}$ | By $\alpha=\frac{\pi}{2}$ |
$\displaystyle\cos\left(-\theta\right)=\cos(\theta)$ | $\displaystyle\cos\left(\frac{\pi}{2}-\theta\right)=\sin(\theta)$ | $\displaystyle\cos\left(\pi-\theta\right)=-\cos(\theta)$ |
$\displaystyle\sin\left(-\theta\right)=-\sin(\theta)$ | $\displaystyle\sin\left(\frac{\pi}{2}-\theta\right)=\cos(\theta)$ | $\displaystyle\sin\left(\pi-\theta\right)=\sin(\theta)$ |
$\displaystyle\tan\left(-\theta\right)=-\tan(\theta)$ | $\displaystyle\tan\left(\frac{\pi}{2}-\theta\right)=\frac{1}{\tan(\theta)}$ | $\displaystyle\tan\left(\pi-\theta\right)=-\tan(\theta)$ |
Shift identities The following identities are commonly used:
By $\frac{\pi}{2}$ | By $\pi$ |
$\displaystyle\cos\left(\theta+\frac{\pi}{2}\right)=-\sin(\theta)$ | $\displaystyle\cos\left(\theta+\pi\right)=-\cos(\theta)$ |
$\displaystyle\sin\left(\theta+\frac{\pi}{2}\right)=\cos(\theta)$ | $\displaystyle\sin\left(\theta+\pi\right)=-\sin(\theta)$ |
$\displaystyle\tan\left(\theta+\frac{\pi}{2}\right)=-\frac{1}{\tan(\theta)}$ | $\displaystyle\tan\left(\theta+\pi\right)=\tan(\theta)$ |
Miscellaneous
Kashani theorem The Kashani theorem, also known as the law of cosines, states that in a triangle, the lengths $a$, $b$, $c$ and the angle $\gamma$ between sides of length $a$ and $b$ satisfy the following equation:
Remark: for $\gamma=\frac{\pi}{2}$, the triangle is right and the identity is the Pythagorean theorem.
Law of sines In a given triangle of lengths $a,b,c$ and opposite angles $A,B,C$, the law of sines states that we have:
Values for common angles The following table sums up the values for common angles to have in mind:
Angle $\theta$ (radians $\leftrightarrow$ degrees) | $\cos(\theta)$ | $\sin(\theta)$ | $\tan(\theta)$ |
$\displaystyle0\leftrightarrow0^{\circ}$ | $\displaystyle1$ | $\displaystyle0$ | $\displaystyle0$ |
$\displaystyle\frac{\pi}{6}\leftrightarrow30^{\circ}$ | $\displaystyle\frac{\sqrt{3}}{2}$ | $\displaystyle\frac{1}{2}$ | $\displaystyle\frac{\sqrt{3}}{3}$ |
$\displaystyle\frac{\pi}{4}\leftrightarrow45^{\circ}$ | $\displaystyle\frac{\sqrt{2}}{2}$ | $\displaystyle\frac{\sqrt{2}}{2}$ | $\displaystyle1$ |
$\displaystyle\frac{\pi}{3}\leftrightarrow60^{\circ}$ | $\displaystyle\frac{1}{2}$ | $\displaystyle\frac{\sqrt{3}}{2}$ | $\displaystyle\sqrt{3}$ |
$\displaystyle\frac{\pi}{2}\leftrightarrow90^{\circ}$ | $\displaystyle0$ | $\displaystyle1$ | $\infty$ |